|
@@ -42,7 +42,7 @@ def load_model(model_name):
|
|
|
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
|
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
|
|
|
|
|
|
|
# Default settings
|
|
# Default settings
|
|
|
- if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.llama_bits>0 or shared.args.load_in_4bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
|
|
|
|
|
|
|
+ if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.llama_bits > 0, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
|
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
|
|
else:
|
|
else:
|
|
@@ -88,56 +88,10 @@ def load_model(model_name):
|
|
|
return model, tokenizer
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
# 4-bit LLaMA
|
|
# 4-bit LLaMA
|
|
|
- elif shared.args.llama_bits>0 or shared.args.load_in_4bit:
|
|
|
|
|
- sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
|
|
|
|
|
- if shared.args.load_in_4bit:
|
|
|
|
|
- bits = 4
|
|
|
|
|
- else:
|
|
|
|
|
- bits = shared.args.llama_bits
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
- from llama import load_quant
|
|
|
|
|
-
|
|
|
|
|
- path_to_model = Path(f'models/{model_name}')
|
|
|
|
|
- pt_model = ''
|
|
|
|
|
- if path_to_model.name.lower().startswith('llama-7b'):
|
|
|
|
|
- pt_model = f'llama-7b-{bits}bit.pt'
|
|
|
|
|
- elif path_to_model.name.lower().startswith('llama-13b'):
|
|
|
|
|
- pt_model = f'llama-13b-{bits}bit.pt'
|
|
|
|
|
- elif path_to_model.name.lower().startswith('llama-30b'):
|
|
|
|
|
- pt_model = f'llama-30b-{bits}bit.pt'
|
|
|
|
|
- elif path_to_model.name.lower().startswith('llama-65b'):
|
|
|
|
|
- pt_model = f'llama-65b-{bits}bit.pt'
|
|
|
|
|
- else:
|
|
|
|
|
- pt_model = f'{model_name}-{bits}bit.pt'
|
|
|
|
|
-
|
|
|
|
|
- # Try to find the .pt both in models/ and in the subfolder
|
|
|
|
|
- pt_path = None
|
|
|
|
|
- for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
|
|
|
|
|
- if path.exists():
|
|
|
|
|
- pt_path = path
|
|
|
|
|
-
|
|
|
|
|
- if not pt_path:
|
|
|
|
|
- print(f"Could not find {pt_model}, exiting...")
|
|
|
|
|
- exit()
|
|
|
|
|
-
|
|
|
|
|
- model = load_quant(path_to_model, pt_path, bits)
|
|
|
|
|
|
|
+ elif shared.args.llama_bits > 0 or shared.args.load_in_4bit:
|
|
|
|
|
+ from modules.quantized_LLaMA import load_quantized_LLaMA
|
|
|
|
|
|
|
|
- # Multi-GPU setup
|
|
|
|
|
- if shared.args.gpu_memory:
|
|
|
|
|
- import accelerate
|
|
|
|
|
-
|
|
|
|
|
- max_memory = {}
|
|
|
|
|
- for i in range(len(shared.args.gpu_memory)):
|
|
|
|
|
- max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
|
|
|
|
|
- max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
|
|
|
|
|
-
|
|
|
|
|
- device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
|
|
|
|
|
- model = accelerate.dispatch_model(model, device_map=device_map)
|
|
|
|
|
-
|
|
|
|
|
- # Single GPU
|
|
|
|
|
- else:
|
|
|
|
|
- model = model.to(torch.device('cuda:0'))
|
|
|
|
|
|
|
+ model = load_quantized_LLaMA(model_name)
|
|
|
|
|
|
|
|
# Custom
|
|
# Custom
|
|
|
else:
|
|
else:
|