|
|
@@ -2,23 +2,19 @@ import os
|
|
|
import re
|
|
|
import time
|
|
|
import glob
|
|
|
+from sys import exit
|
|
|
import torch
|
|
|
+import argparse
|
|
|
import gradio as gr
|
|
|
import transformers
|
|
|
from transformers import AutoTokenizer
|
|
|
from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel
|
|
|
|
|
|
-#model_name = "bloomz-7b1-p3"
|
|
|
-#model_name = 'gpt-j-6B-float16'
|
|
|
-#model_name = "opt-6.7b"
|
|
|
-#model_name = 'opt-13b'
|
|
|
-model_name = "gpt4chan_model_float16"
|
|
|
-#model_name = 'galactica-6.7b'
|
|
|
-#model_name = 'gpt-neox-20b'
|
|
|
-#model_name = 'flan-t5'
|
|
|
-#model_name = 'OPT-13B-Erebus'
|
|
|
-
|
|
|
+parser = argparse.ArgumentParser()
|
|
|
+parser.add_argument('--model', type=str, help='Name of the model to load by default')
|
|
|
+args = parser.parse_args()
|
|
|
loaded_preset = None
|
|
|
+available_models = sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*[!\.][!t][!x][!t]")+ glob.glob("torch-dumps/*[!\.][!t][!x][!t]"))))
|
|
|
|
|
|
def load_model(model_name):
|
|
|
print(f"Loading {model_name}...")
|
|
|
@@ -85,7 +81,24 @@ def generate_reply(question, temperature, max_length, inference_settings, select
|
|
|
|
|
|
return reply
|
|
|
|
|
|
+# Choosing the default model
|
|
|
+if args.model is not None:
|
|
|
+ model_name = args.model
|
|
|
+else:
|
|
|
+ if len(available_models == 0):
|
|
|
+ print("No models are available! Please download at least one.")
|
|
|
+ exit(0)
|
|
|
+ elif len(available_models) == 1:
|
|
|
+ i = 0
|
|
|
+ else:
|
|
|
+ print("The following models are available:\n")
|
|
|
+ for i,model in enumerate(available_models):
|
|
|
+ print(f"{i+1}. {model}")
|
|
|
+ print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
|
|
|
+ i = int(input())-1
|
|
|
+ model_name = available_models[i]
|
|
|
model, tokenizer = load_model(model_name)
|
|
|
+
|
|
|
if model_name.startswith('gpt4chan'):
|
|
|
default_text = "-----\n--- 865467536\nInput text\n--- 865467537\n"
|
|
|
else:
|
|
|
@@ -98,7 +111,7 @@ interface = gr.Interface(
|
|
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
|
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
|
|
gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
|
|
- gr.Dropdown(choices=sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*") + glob.glob("torch-dumps/*")))), value=model_name),
|
|
|
+ gr.Dropdown(choices=available_models, value=model_name),
|
|
|
],
|
|
|
outputs=[
|
|
|
gr.Textbox(placeholder="", lines=15),
|