|
|
@@ -65,8 +65,12 @@ def load_quantized(model_name):
|
|
|
else:
|
|
|
model_type = shared.args.model_type.lower()
|
|
|
|
|
|
- if model_type == 'llama' and shared.args.pre_layer:
|
|
|
- load_quant = llama_inference_offload.load_quant
|
|
|
+ if shared.args.pre_layer:
|
|
|
+ if model_type == 'llama':
|
|
|
+ load_quant = llama_inference_offload.load_quant
|
|
|
+ else:
|
|
|
+ print("Warning: ignoring --pre_layer because it only works for llama model type.")
|
|
|
+ load_quant = _load_quant
|
|
|
elif model_type in ('llama', 'opt', 'gptj'):
|
|
|
load_quant = _load_quant
|
|
|
else:
|
|
|
@@ -107,7 +111,7 @@ def load_quantized(model_name):
|
|
|
exit()
|
|
|
|
|
|
# qwopqwop200's offload
|
|
|
- if shared.args.pre_layer:
|
|
|
+ if model_type == 'llama' and shared.args.pre_layer:
|
|
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
|
|
|
else:
|
|
|
threshold = False if model_type == 'gptj' else 128
|