|
@@ -85,19 +85,13 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
if shared.is_RWKV:
|
|
if shared.is_RWKV:
|
|
|
- args = PIPELINE_ARGS(temperature = temperature, top_p = top_p,
|
|
|
|
|
- alpha_frequency = 0.25, # Frequency Penalty (as in GPT-3)
|
|
|
|
|
- alpha_presence = 0.25, # Presence Penalty (as in GPT-3)
|
|
|
|
|
- token_ban = [0], # ban the generation of some tokens
|
|
|
|
|
- token_stop = []) # stop generation whenever you see any token here
|
|
|
|
|
-
|
|
|
|
|
if shared.args.no_stream:
|
|
if shared.args.no_stream:
|
|
|
- reply = question + shared.model.generate(question, token_count=max_new_tokens, args=args, callback=None)
|
|
|
|
|
|
|
+ reply = question + shared.model.generate(question, token_count=max_new_tokens, temperature=temperature)
|
|
|
yield formatted_outputs(reply, None)
|
|
yield formatted_outputs(reply, None)
|
|
|
return formatted_outputs(reply, None)
|
|
return formatted_outputs(reply, None)
|
|
|
else:
|
|
else:
|
|
|
for i in range(max_new_tokens//8):
|
|
for i in range(max_new_tokens//8):
|
|
|
- reply = question + shared.model.generate(question, token_count=8, args=args, callback=None)
|
|
|
|
|
|
|
+ reply = question + shared.model.generate(question, token_count=8, temperature=temperature)
|
|
|
yield formatted_outputs(reply, None)
|
|
yield formatted_outputs(reply, None)
|
|
|
question = reply
|
|
question = reply
|
|
|
return formatted_outputs(reply, None)
|
|
return formatted_outputs(reply, None)
|