|
|
@@ -11,7 +11,8 @@ from transformers import AutoTokenizer
|
|
|
from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
-parser.add_argument('--model', type=str, help='Name of the model to load by default')
|
|
|
+parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
|
|
+parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
|
|
|
args = parser.parse_args()
|
|
|
loaded_preset = None
|
|
|
available_models = sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*[!\.][!t][!x][!t]")+ glob.glob("torch-dumps/*[!\.][!t][!x][!t]"))))
|
|
|
@@ -79,7 +80,10 @@ def generate_reply(question, temperature, max_length, inference_settings, select
|
|
|
if model_name.startswith('gpt4chan'):
|
|
|
reply = fix_gpt4chan(reply)
|
|
|
|
|
|
- return reply
|
|
|
+ if model_name.lower().startswith('galactica'):
|
|
|
+ return reply, reply
|
|
|
+ else:
|
|
|
+ return reply, ''
|
|
|
|
|
|
# Choosing the default model
|
|
|
if args.model is not None:
|
|
|
@@ -104,20 +108,40 @@ if model_name.startswith('gpt4chan'):
|
|
|
else:
|
|
|
default_text = "Common sense questions and answers\n\nQuestion: \nFactual answer:"
|
|
|
|
|
|
-interface = gr.Interface(
|
|
|
- generate_reply,
|
|
|
- inputs=[
|
|
|
- gr.Textbox(value=default_text, lines=15),
|
|
|
- gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
|
- gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
|
|
- gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
|
|
- gr.Dropdown(choices=available_models, value=model_name),
|
|
|
- ],
|
|
|
- outputs=[
|
|
|
- gr.Textbox(placeholder="", lines=15),
|
|
|
- ],
|
|
|
- title="Text generation lab",
|
|
|
- description=f"Generate text using Large Language Models.",
|
|
|
-)
|
|
|
+if args.notebook:
|
|
|
+ with gr.Blocks() as interface:
|
|
|
+ gr.Markdown(
|
|
|
+ f"""
|
|
|
+ # Text generation lab
|
|
|
+ Generate text using Large Language Models.
|
|
|
+ """
|
|
|
+ )
|
|
|
+
|
|
|
+ textbox = gr.Textbox(value=default_text, lines=23)
|
|
|
+ temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
|
|
|
+ length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
|
|
|
+ preset_menu = gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default")
|
|
|
+ model_menu = gr.Dropdown(choices=available_models, value=model_name)
|
|
|
+ btn = gr.Button("Generate")
|
|
|
+ markdown = gr.Markdown()
|
|
|
+
|
|
|
+ btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown], show_progress=False)
|
|
|
+else:
|
|
|
+ interface = gr.Interface(
|
|
|
+ generate_reply,
|
|
|
+ inputs=[
|
|
|
+ gr.Textbox(value=default_text, lines=15),
|
|
|
+ gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
|
+ gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
|
|
+ gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
|
|
+ gr.Dropdown(choices=available_models, value=model_name),
|
|
|
+ ],
|
|
|
+ outputs=[
|
|
|
+ gr.Textbox(placeholder="", lines=15),
|
|
|
+ gr.Markdown()
|
|
|
+ ],
|
|
|
+ title="Text generation lab",
|
|
|
+ description=f"Generate text using Large Language Models.",
|
|
|
+ )
|
|
|
|
|
|
interface.launch(share=False, server_name="0.0.0.0")
|