|
@@ -1,5 +1,6 @@
|
|
|
-import time
|
|
|
|
|
import re
|
|
import re
|
|
|
|
|
+import time
|
|
|
|
|
+import glob
|
|
|
import torch
|
|
import torch
|
|
|
import gradio as gr
|
|
import gradio as gr
|
|
|
import transformers
|
|
import transformers
|
|
@@ -16,6 +17,8 @@ model_name = 'galactica-6.7b'
|
|
|
#model_name = 'flan-t5'
|
|
#model_name = 'flan-t5'
|
|
|
#model_name = 'OPT-13B-Erebus'
|
|
#model_name = 'OPT-13B-Erebus'
|
|
|
|
|
|
|
|
|
|
+settings_name = "Default"
|
|
|
|
|
+
|
|
|
def load_model(model_name):
|
|
def load_model(model_name):
|
|
|
print(f"Loading {model_name}")
|
|
print(f"Loading {model_name}")
|
|
|
|
|
|
|
@@ -48,7 +51,7 @@ def fix_gpt4chan(s):
|
|
|
return s
|
|
return s
|
|
|
|
|
|
|
|
def fn(question, temperature, max_length, inference_settings, selected_model):
|
|
def fn(question, temperature, max_length, inference_settings, selected_model):
|
|
|
- global model, tokenizer, model_name
|
|
|
|
|
|
|
+ global model, tokenizer, model_name, settings_name
|
|
|
|
|
|
|
|
if selected_model != model_name:
|
|
if selected_model != model_name:
|
|
|
model_name = selected_model
|
|
model_name = selected_model
|
|
@@ -56,35 +59,17 @@ def fn(question, temperature, max_length, inference_settings, selected_model):
|
|
|
tokenier = None
|
|
tokenier = None
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.empty_cache()
|
|
|
model, tokenizer = load_model(model_name)
|
|
model, tokenizer = load_model(model_name)
|
|
|
|
|
+ if inference_settings != settings_name:
|
|
|
|
|
+ with open(f'presets/{inference_settings}.txt', 'r') as infile:
|
|
|
|
|
+ preset = infile.read()
|
|
|
|
|
+ settings_name = inference_settings
|
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.empty_cache()
|
|
|
input_text = question
|
|
input_text = question
|
|
|
input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda()
|
|
input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda()
|
|
|
|
|
|
|
|
- if inference_settings == 'Default':
|
|
|
|
|
- output = model.generate(
|
|
|
|
|
- input_ids,
|
|
|
|
|
- do_sample=True,
|
|
|
|
|
- max_new_tokens=max_length,
|
|
|
|
|
- #max_length=max_length+len(input_ids[0]),
|
|
|
|
|
- top_p=1,
|
|
|
|
|
- typical_p=0.3,
|
|
|
|
|
- temperature=temperature,
|
|
|
|
|
- ).cuda()
|
|
|
|
|
- elif inference_settings == 'Verbose':
|
|
|
|
|
- output = model.generate(
|
|
|
|
|
- input_ids,
|
|
|
|
|
- num_beams=10,
|
|
|
|
|
- min_length=max_length,
|
|
|
|
|
- max_new_tokens=max_length,
|
|
|
|
|
- length_penalty =1.4,
|
|
|
|
|
- no_repeat_ngram_size=2,
|
|
|
|
|
- early_stopping=True,
|
|
|
|
|
- temperature=0.7,
|
|
|
|
|
- top_k=150,
|
|
|
|
|
- top_p=0.92,
|
|
|
|
|
- repetition_penalty=4.5,
|
|
|
|
|
- ).cuda()
|
|
|
|
|
|
|
+
|
|
|
|
|
+ output = eval(f"model.generate(input_ids, {preset}).cuda()")
|
|
|
|
|
|
|
|
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
if model_name.startswith('gpt4chan'):
|
|
if model_name.startswith('gpt4chan'):
|
|
@@ -104,7 +89,7 @@ interface = gr.Interface(
|
|
|
gr.Textbox(value=default_text, lines=15),
|
|
gr.Textbox(value=default_text, lines=15),
|
|
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
|
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
|
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
|
|
- gr.Dropdown(choices=["Default", "Verbose"], value="Default"),
|
|
|
|
|
|
|
+ gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
|
|
gr.Dropdown(choices=["gpt4chan_model_float16", "galactica-6.7b", "opt-6.7b", "opt-13b", "gpt-neox-20b", "gpt-j-6B-float16", "flan-t5", "bloomz-7b1-p3", "OPT-13B-Erebus"], value=model_name),
|
|
gr.Dropdown(choices=["gpt4chan_model_float16", "galactica-6.7b", "opt-6.7b", "opt-13b", "gpt-neox-20b", "gpt-j-6B-float16", "flan-t5", "bloomz-7b1-p3", "OPT-13B-Erebus"], value=model_name),
|
|
|
],
|
|
],
|
|
|
outputs=[
|
|
outputs=[
|