|
|
@@ -24,26 +24,23 @@ def clean_chat_message(text):
|
|
|
text = text.strip()
|
|
|
return text
|
|
|
|
|
|
-def generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
|
|
|
- text = clean_chat_message(text)
|
|
|
+def generate_chat_prompt(user_input, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
|
|
|
+ user_input = clean_chat_message(user_input)
|
|
|
rows = [f"{context.strip()}\n"]
|
|
|
- i = len(shared.history['internal'])-1
|
|
|
- count = 0
|
|
|
|
|
|
if shared.soft_prompt:
|
|
|
- chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
|
|
|
+ chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
|
|
|
max_length = min(get_max_prompt_length(tokens), chat_prompt_size)
|
|
|
|
|
|
+ i = len(shared.history['internal'])-1
|
|
|
while i >= 0 and len(encode(''.join(rows), tokens)[0]) < max_length:
|
|
|
rows.insert(1, f"{name2}: {shared.history['internal'][i][1].strip()}\n")
|
|
|
- count += 1
|
|
|
if not (shared.history['internal'][i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
|
|
|
rows.insert(1, f"{name1}: {shared.history['internal'][i][0].strip()}\n")
|
|
|
- count += 1
|
|
|
i -= 1
|
|
|
|
|
|
if not impersonate:
|
|
|
- rows.append(f"{name1}: {text}\n")
|
|
|
+ rows.append(f"{name1}: {user_input}\n")
|
|
|
rows.append(apply_extensions(f"{name2}:", "bot_prefix"))
|
|
|
limit = 3
|
|
|
else:
|
|
|
@@ -52,10 +49,9 @@ def generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size,
|
|
|
|
|
|
while len(rows) > limit and len(encode(''.join(rows), tokens)[0]) >= max_length:
|
|
|
rows.pop(1)
|
|
|
- rows.pop(1)
|
|
|
|
|
|
- question = ''.join(rows)
|
|
|
- return question
|
|
|
+ prompt = ''.join(rows)
|
|
|
+ return prompt
|
|
|
|
|
|
def extract_message_from_reply(question, reply, current, other, check, extensions=False):
|
|
|
next_character_found = False
|
|
|
@@ -101,23 +97,27 @@ def stop_everything_event():
|
|
|
|
|
|
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
|
|
shared.stop_everything = False
|
|
|
+ just_started = True
|
|
|
+ eos_token = '\n' if check else None
|
|
|
|
|
|
if 'pygmalion' in shared.model_name.lower():
|
|
|
name1 = "You"
|
|
|
|
|
|
+ # Create the prompt
|
|
|
if shared.args.picture and picture is not None:
|
|
|
text, visible_text = generate_chat_picture(picture, name1, name2)
|
|
|
else:
|
|
|
visible_text = text
|
|
|
if shared.args.chat:
|
|
|
visible_text = visible_text.replace('\n', '<br>')
|
|
|
-
|
|
|
text = apply_extensions(text, "input")
|
|
|
- question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
|
|
|
- eos_token = '\n' if check else None
|
|
|
- first = True
|
|
|
- for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
|
|
- reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name2, name1, check, extensions=True)
|
|
|
+ prompt = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
|
|
|
+
|
|
|
+ # Generate
|
|
|
+ for reply in generate_reply(prompt, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
|
|
+
|
|
|
+ # Extracting the reply
|
|
|
+ reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name2, name1, check, extensions=True)
|
|
|
visible_reply = apply_extensions(reply, "output")
|
|
|
if shared.args.chat:
|
|
|
visible_reply = visible_reply.replace('\n', '<br>')
|
|
|
@@ -126,9 +126,8 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
|
|
|
# otherwise gradio gets confused
|
|
|
if shared.stop_everything:
|
|
|
return shared.history['visible']
|
|
|
-
|
|
|
- if first:
|
|
|
- first = False
|
|
|
+ if just_started:
|
|
|
+ just_started = False
|
|
|
shared.history['internal'].append(['', ''])
|
|
|
shared.history['visible'].append(['', ''])
|
|
|
|
|
|
@@ -144,10 +143,10 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
|
|
|
if 'pygmalion' in shared.model_name.lower():
|
|
|
name1 = "You"
|
|
|
|
|
|
- question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
|
|
+ prompt = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
|
|
eos_token = '\n' if check else None
|
|
|
- for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
|
|
- reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name1, name2, check, extensions=False)
|
|
|
+ for reply in generate_reply(prompt, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
|
|
+ reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, extensions=False)
|
|
|
if not substring_found:
|
|
|
yield reply
|
|
|
if next_character_found:
|