|
@@ -18,7 +18,7 @@ model_name = 'galactica-6.7b'
|
|
|
#model_name = 'flan-t5'
|
|
#model_name = 'flan-t5'
|
|
|
#model_name = 'OPT-13B-Erebus'
|
|
#model_name = 'OPT-13B-Erebus'
|
|
|
|
|
|
|
|
-settings_name = "Default"
|
|
|
|
|
|
|
+loaded_preset = None
|
|
|
|
|
|
|
|
def load_model(model_name):
|
|
def load_model(model_name):
|
|
|
print(f"Loading {model_name}...")
|
|
print(f"Loading {model_name}...")
|
|
@@ -31,7 +31,7 @@ def load_model(model_name):
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
|
|
|
elif model_name in ['gpt-j-6B']:
|
|
elif model_name in ['gpt-j-6B']:
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
- elif model_name in ['flan-t5']:
|
|
|
|
|
|
|
+ elif model_name in ['flan-t5', 't5-large']:
|
|
|
model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
|
|
model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
|
|
|
|
|
|
|
|
if model_name in ['gpt4chan_model_float16']:
|
|
if model_name in ['gpt4chan_model_float16']:
|
|
@@ -41,7 +41,7 @@ def load_model(model_name):
|
|
|
else:
|
|
else:
|
|
|
tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/")
|
|
tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/")
|
|
|
|
|
|
|
|
- print(f"Loaded the model in {time.time()-t0} seconds.")
|
|
|
|
|
|
|
+ print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
|
return model, tokenizer
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
def fix_gpt4chan(s):
|
|
def fix_gpt4chan(s):
|
|
@@ -53,7 +53,7 @@ def fix_gpt4chan(s):
|
|
|
return s
|
|
return s
|
|
|
|
|
|
|
|
def fn(question, temperature, max_length, inference_settings, selected_model):
|
|
def fn(question, temperature, max_length, inference_settings, selected_model):
|
|
|
- global model, tokenizer, model_name, settings_name
|
|
|
|
|
|
|
+ global model, tokenizer, model_name, loaded_preset, preset
|
|
|
|
|
|
|
|
if selected_model != model_name:
|
|
if selected_model != model_name:
|
|
|
model_name = selected_model
|
|
model_name = selected_model
|
|
@@ -61,10 +61,10 @@ def fn(question, temperature, max_length, inference_settings, selected_model):
|
|
|
tokenier = None
|
|
tokenier = None
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.empty_cache()
|
|
|
model, tokenizer = load_model(model_name)
|
|
model, tokenizer = load_model(model_name)
|
|
|
- if inference_settings != settings_name:
|
|
|
|
|
|
|
+ if inference_settings != loaded_preset:
|
|
|
with open(f'presets/{inference_settings}.txt', 'r') as infile:
|
|
with open(f'presets/{inference_settings}.txt', 'r') as infile:
|
|
|
preset = infile.read()
|
|
preset = infile.read()
|
|
|
- settings_name = inference_settings
|
|
|
|
|
|
|
+ loaded_preset = inference_settings
|
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.empty_cache()
|
|
|
input_text = question
|
|
input_text = question
|
|
@@ -92,7 +92,7 @@ interface = gr.Interface(
|
|
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
|
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
|
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
|
|
gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
|
gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
|
|
- gr.Dropdown(choices=["gpt4chan_model_float16", "galactica-6.7b", "opt-6.7b", "opt-13b", "gpt-neox-20b", "gpt-j-6B-float16", "flan-t5", "bloomz-7b1-p3", "OPT-13B-Erebus"], value=model_name),
|
|
|
|
|
|
|
+ gr.Dropdown(choices=sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*") + glob.glob("torch-dumps/*")))), value=model_name),
|
|
|
],
|
|
],
|
|
|
outputs=[
|
|
outputs=[
|
|
|
gr.Textbox(placeholder="", lines=15),
|
|
gr.Textbox(placeholder="", lines=15),
|