|
|
@@ -115,7 +115,8 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
print(f"\n\n{question}\n--------------------\n")
|
|
|
|
|
|
input_ids = encode(question, max_new_tokens)
|
|
|
- original_input_ids = output = input_ids
|
|
|
+ original_input_ids = input_ids
|
|
|
+ output = input_ids[0]
|
|
|
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
|
|
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
|
|
|
if stopping_string is not None:
|
|
|
@@ -186,7 +187,8 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
if 'stopping_criteria' not in kwargs:
|
|
|
kwargs['stopping_criteria'] = []
|
|
|
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
|
|
- shared.model.generate(**kwargs)[0]
|
|
|
+ clear_torch_cache()
|
|
|
+ shared.model.generate(**kwargs)
|
|
|
|
|
|
def generate_with_streaming(**kwargs):
|
|
|
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
|
|
@@ -208,7 +210,6 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
else:
|
|
|
for i in range(max_new_tokens//8+1):
|
|
|
clear_torch_cache()
|
|
|
-
|
|
|
with torch.no_grad():
|
|
|
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
|
|
|
if shared.soft_prompt:
|