Browse Source

Use BLIP to send a picture to model

SillyLossy 3 năm trước cách đây
mục cha
commit
a7d98f494a
4 tập tin đã thay đổi với 58 bổ sung18 xóa
  1. 9 0
      modules/bot_picture.py
  2. 6 0
      modules/html_generator.py
  3. 1 0
      requirements.txt
  4. 42 18
      server.py

+ 9 - 0
modules/bot_picture.py

@@ -0,0 +1,9 @@
+from nataili_blip.model_manager import BlipModelManager
+from nataili_blip.caption import Caption
+
+def load_model():
+    model_name = "BLIP"
+    mm = BlipModelManager()
+    mm.download_model(model_name)
+    mm.load_blip(model_name)
+    return Caption(mm.loaded_models[model_name]["model"], mm.loaded_models[model_name]["device"])

+ 6 - 0
modules/html_generator.py

@@ -217,6 +217,12 @@ def generate_chat_html(history, name1, name2, character):
 
 
     .body {
     .body {
     }
     }
+
+    .body img {
+      max-width: 300px;
+      max-height: 300px;
+      border-radius: 20px;
+    }
     """
     """
 
 
     output = ''
     output = ''

+ 1 - 0
requirements.txt

@@ -4,4 +4,5 @@ bitsandbytes==0.37.0
 gradio==3.15.0
 gradio==3.15.0
 numpy
 numpy
 safetensors==0.2.8
 safetensors==0.2.8
+nataili_blip
 git+https://github.com/huggingface/transformers
 git+https://github.com/huggingface/transformers

+ 42 - 18
server.py

@@ -23,6 +23,7 @@ from tqdm import tqdm
 from transformers import AutoConfig
 from transformers import AutoConfig
 from transformers import AutoModelForCausalLM
 from transformers import AutoModelForCausalLM
 from transformers import AutoTokenizer
 from transformers import AutoTokenizer
+from io import BytesIO
 
 
 from modules.html_generator import *
 from modules.html_generator import *
 from modules.stopping_criteria import _SentinelTokenStoppingCriteria
 from modules.stopping_criteria import _SentinelTokenStoppingCriteria
@@ -53,6 +54,7 @@ parser.add_argument('--listen', action='store_true', help='Make the web UI reach
 parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
 parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
 parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
 parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
 parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
 parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
+parser.add_argument('--picture', action='store_true', help='Adds an ability to send pictures in chat UI modes.')
 args = parser.parse_args()
 args = parser.parse_args()
 
 
 if (args.chat or args.cai_chat) and not args.no_stream:
 if (args.chat or args.cai_chat) and not args.no_stream:
@@ -97,6 +99,10 @@ if args.deepspeed:
     ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
     ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
     dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
     dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
 
 
+if args.picture and (args.cai_chat or args.chat):
+    import modules.bot_picture as bot_picture
+    blip = bot_picture.load_model()
+
 def load_model(model_name):
 def load_model(model_name):
     print(f"Loading {model_name}...")
     print(f"Loading {model_name}...")
     t0 = time.time()
     t0 = time.time()
@@ -561,8 +567,12 @@ def extract_message_from_reply(question, reply, current, other, check, extension
 
 
     return reply, next_character_found, substring_found
     return reply, next_character_found, substring_found
 
 
-def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
+def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
     original_text = text
     original_text = text
+
+    if args.picture and picture is not None:
+        text, original_text = generate_chat_picture(picture, name1, name2)
+
     text = apply_extensions(text, "input")
     text = apply_extensions(text, "input")
     question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
     question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
     history['internal'].append(['', ''])
     history['internal'].append(['', ''])
@@ -573,12 +583,12 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
         history['internal'][-1] = [text, reply]
         history['internal'][-1] = [text, reply]
         history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
         history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
         if not substring_found:
         if not substring_found:
-            yield history['visible']
+            yield history['visible'], None
         if next_character_found:
         if next_character_found:
             break
             break
-    yield history['visible']
+    yield history['visible'], None
 
 
-def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
+def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
     question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
     question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
     eos_token = '\n' if check else None
     eos_token = '\n' if check else None
     for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
     for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
@@ -589,20 +599,20 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
             break
             break
     yield apply_extensions(reply, "output")
     yield apply_extensions(reply, "output")
 
 
-def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
-    for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
-        yield generate_chat_html(_history, name1, name2, character)
+def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
+    for _history, _ in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
+        yield generate_chat_html(_history, name1, name2, character), None
 
 
-def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
+def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
     last = history['visible'].pop()
     last = history['visible'].pop()
     history['internal'].pop()
     history['internal'].pop()
     text = last[0]
     text = last[0]
     if args.cai_chat:
     if args.cai_chat:
-        for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
-            yield i
+        for i, _ in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
+            yield i, None
     else:
     else:
-        for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
-            yield i
+        for i, _ in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
+            yield i, None
 
 
 def remove_last_message(name1, name2):
 def remove_last_message(name1, name2):
     if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
     if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
@@ -791,6 +801,14 @@ def upload_your_profile_picture(img):
     img.save(Path(f'img_me.png'))
     img.save(Path(f'img_me.png'))
     print(f'Profile picture saved to "img_me.png"')
     print(f'Profile picture saved to "img_me.png"')
 
 
+def generate_chat_picture(picture, name1, name2):
+    text = f'*{name1} sends {name2} a picture that contains the following: "{blip(picture)}"*'        
+    buffer = BytesIO()
+    picture.save(buffer, format="JPEG")
+    img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
+    original_text = f'<img src="data:image/jpeg;base64,{img_str}">'
+    return text, original_text
+
 # Global variables
 # Global variables
 available_models = get_available_models()
 available_models = get_available_models()
 available_presets = get_available_presets()
 available_presets = get_available_presets()
@@ -861,6 +879,9 @@ if args.chat or args.cai_chat:
         with gr.Row():
         with gr.Row():
             buttons["Send last reply to input"] = gr.Button("Send last reply to input")
             buttons["Send last reply to input"] = gr.Button("Send last reply to input")
             buttons["Replace last reply"] = gr.Button("Replace last reply")
             buttons["Replace last reply"] = gr.Button("Replace last reply")
+        if args.picture:
+            with gr.Row():
+                picture_select = gr.Image(label="Send a picture", type='pil', display_label=True)
 
 
         with gr.Row():
         with gr.Row():
             with gr.Column():
             with gr.Column():
@@ -906,14 +927,17 @@ if args.chat or args.cai_chat:
         if args.extensions is not None:
         if args.extensions is not None:
             create_extensions_block()
             create_extensions_block()
 
 
-        input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider]
+        input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider, picture_select]
+        output_params = [display, picture_select]
         if args.cai_chat:
         if args.cai_chat:
-            gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
-            gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream))
+            gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream, api_name="textgen"))
+            gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream))
+            picture_select.upload(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream)
         else:
         else:
-            gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
-            gen_events.append(textbox.submit(chatbot_wrapper, input_params, display, show_progress=args.no_stream))
-        gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, display, show_progress=args.no_stream))
+            gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream, api_name="textgen"))
+            gen_events.append(textbox.submit(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream))
+            picture_select.upload(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream)
+        gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, output_params, show_progress=args.no_stream))
         gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
         gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
 
 
         buttons["Send last reply to input"].click(send_last_reply_to_input, [], textbox, show_progress=args.no_stream)
         buttons["Send last reply to input"].click(send_last_reply_to_input, [], textbox, show_progress=args.no_stream)