|
|
@@ -17,6 +17,8 @@ parser.add_argument('--model', type=str, help='Name of the model to load by defa
|
|
|
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
|
|
|
parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.')
|
|
|
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
|
|
+parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
|
|
+parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
|
|
parser.add_argument('--listen', action='store_true', help='Make the webui reachable from your local network.')
|
|
|
args = parser.parse_args()
|
|
|
loaded_preset = None
|
|
|
@@ -28,22 +30,44 @@ def load_model(model_name):
|
|
|
print(f"Loading {model_name}...")
|
|
|
t0 = time.time()
|
|
|
|
|
|
- # Loading the model
|
|
|
- if not args.cpu and Path(f"torch-dumps/{model_name}.pt").exists():
|
|
|
- print("Loading in .pt format...")
|
|
|
- model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
|
|
|
- elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
|
|
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
|
|
- elif model_name in ['flan-t5', 't5-large']:
|
|
|
- if args.cpu:
|
|
|
- model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}"))
|
|
|
- else:
|
|
|
+ # Default settings
|
|
|
+ if not (args.cpu or args.auto_devices or args.load_in_8bit):
|
|
|
+ if Path(f"torch-dumps/{model_name}.pt").exists():
|
|
|
+ print("Loading in .pt format...")
|
|
|
+ model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
|
|
|
+ elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
|
|
+ elif model_name in ['flan-t5', 't5-large']:
|
|
|
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
|
|
|
+ else:
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
+
|
|
|
+ # Custom
|
|
|
else:
|
|
|
+ settings = ["low_cpu_mem_usage=True"]
|
|
|
+ cuda = ""
|
|
|
+
|
|
|
+ if model_name in ['flan-t5', 't5-large']:
|
|
|
+ command = f"T5ForConditionalGeneration.from_pretrained"
|
|
|
+ else:
|
|
|
+ command = "AutoModelForCausalLM.from_pretrained"
|
|
|
+
|
|
|
if args.cpu:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
|
|
+ settings.append("torch_dtype=torch.float32")
|
|
|
else:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
+ if args.load_in_8bit:
|
|
|
+ settings.append("device_map='auto'")
|
|
|
+ settings.append("load_in_8bit=True")
|
|
|
+ else:
|
|
|
+ settings.append("torch_dtype=torch.float16")
|
|
|
+ if args.auto_devices:
|
|
|
+ settings.append("device_map='auto'")
|
|
|
+ else:
|
|
|
+ cuda = ".cuda()"
|
|
|
+
|
|
|
+ settings = ', '.join(settings)
|
|
|
+ command = f"{command}(Path(f'models/{model_name}'), {settings}){cuda}"
|
|
|
+ model = eval(command)
|
|
|
|
|
|
# Loading the tokenizer
|
|
|
if model_name.lower().startswith('gpt4chan') and Path(f"models/gpt-j-6B/").exists():
|