|
|
@@ -22,7 +22,7 @@ def get_max_prompt_length(tokens):
|
|
|
return max_length
|
|
|
|
|
|
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
|
|
- if shared.is_RWKV or shared.is_llamacpp:
|
|
|
+ if any((shared.is_RWKV, shared.is_llamacpp)):
|
|
|
input_ids = shared.tokenizer.encode(str(prompt))
|
|
|
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
|
|
return input_ids
|
|
|
@@ -116,7 +116,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
|
|
|
# These models are not part of Hugging Face, so we handle them
|
|
|
# separately and terminate the function call earlier
|
|
|
- if shared.is_RWKV:
|
|
|
+ if any((shared.is_RWKV, shared.is_llamacpp)):
|
|
|
try:
|
|
|
if shared.args.no_stream:
|
|
|
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
|
|
@@ -142,24 +142,6 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
input_ids = encode(question)
|
|
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
|
|
return
|
|
|
- elif shared.is_llamacpp:
|
|
|
- try:
|
|
|
- if shared.args.no_stream:
|
|
|
- reply = shared.model.generate(context=question, num_tokens=max_new_tokens)
|
|
|
- yield formatted_outputs(reply, shared.model_name)
|
|
|
- else:
|
|
|
- if not (shared.args.chat or shared.args.cai_chat):
|
|
|
- yield formatted_outputs(question, shared.model_name)
|
|
|
- for reply in shared.model.generate_with_streaming(context=question, num_tokens=max_new_tokens):
|
|
|
- yield formatted_outputs(reply, shared.model_name)
|
|
|
- except Exception as e:
|
|
|
- print(e)
|
|
|
- finally:
|
|
|
- t1 = time.time()
|
|
|
- output = encode(reply)[0]
|
|
|
- input_ids = encode(question)
|
|
|
- print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
|
|
- return
|
|
|
|
|
|
input_ids = encode(question, max_new_tokens)
|
|
|
original_input_ids = input_ids
|