|
|
@@ -1,3 +1,4 @@
|
|
|
+import re
|
|
|
import sys
|
|
|
from pathlib import Path
|
|
|
|
|
|
@@ -56,16 +57,20 @@ def load_quantized(model_name):
|
|
|
|
|
|
# Multiple GPUs or GPU+CPU
|
|
|
if shared.args.gpu_memory:
|
|
|
+ memory_map = list(map(lambda x : x.strip(), shared.args.gpu_memory))
|
|
|
+ max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
|
|
|
max_memory = {}
|
|
|
- for i in range(len(shared.args.gpu_memory)):
|
|
|
- max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
|
|
|
- max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
|
|
|
+ for i in range(len(memory_map)):
|
|
|
+ max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
|
|
|
+ max_memory['cpu'] = max_cpu_memory
|
|
|
|
|
|
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"])
|
|
|
- model = accelerate.dispatch_model(model, device_map=device_map)
|
|
|
+ print("Using the following device map for the 4-bit model:", device_map)
|
|
|
+ # https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model
|
|
|
+ model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True)
|
|
|
|
|
|
# Single GPU
|
|
|
- else:
|
|
|
+ elif not shared.args.cpu:
|
|
|
model = model.to(torch.device('cuda:0'))
|
|
|
|
|
|
return model
|