|
|
@@ -50,25 +50,19 @@ def get_available_softprompts():
|
|
|
def get_available_loras():
|
|
|
return ['None'] + sorted([item.name for item in list(Path('loras/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
|
|
|
|
|
|
+def unload_model():
|
|
|
+ shared.model = shared.tokenizer = None
|
|
|
+ clear_torch_cache()
|
|
|
+
|
|
|
def load_model_wrapper(selected_model):
|
|
|
if selected_model != shared.model_name:
|
|
|
shared.model_name = selected_model
|
|
|
- shared.model = shared.tokenizer = None
|
|
|
- clear_torch_cache()
|
|
|
- shared.model, shared.tokenizer = load_model(shared.model_name)
|
|
|
-
|
|
|
- return selected_model
|
|
|
|
|
|
-def reload_model():
|
|
|
- unload_model()
|
|
|
- shared.model, shared.tokenizer = load_model(shared.model_name)
|
|
|
+ unload_model()
|
|
|
+ if selected_model != '':
|
|
|
+ shared.model, shared.tokenizer = load_model(shared.model_name)
|
|
|
|
|
|
-def unload_model():
|
|
|
- shared.model = shared.tokenizer = None
|
|
|
- if not shared.args.cpu:
|
|
|
- gc.collect()
|
|
|
- torch.cuda.empty_cache()
|
|
|
- print("Model weights unloaded.")
|
|
|
+ return selected_model
|
|
|
|
|
|
def load_lora_wrapper(selected_lora):
|
|
|
add_lora_to_model(selected_lora)
|
|
|
@@ -128,9 +122,6 @@ def create_model_and_preset_menus():
|
|
|
with gr.Row():
|
|
|
shared.gradio['preset_menu'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
|
|
|
ui.create_refresh_button(shared.gradio['preset_menu'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
|
|
|
- with gr.Row():
|
|
|
- shared.gradio['unload_model'] = gr.Button(value='Unload model to free VRAM', elem_id="unload_model")
|
|
|
- shared.gradio['reload_model'] = gr.Button(value='Reload the model into VRAM', elem_id="reload_model")
|
|
|
|
|
|
def create_settings_menus(default_preset):
|
|
|
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
|
|
|
@@ -185,8 +176,6 @@ def create_settings_menus(default_preset):
|
|
|
shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])
|
|
|
|
|
|
shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
|
|
|
- shared.gradio['unload_model'].click(fn=unload_model,inputs=[],outputs=[])
|
|
|
- shared.gradio['reload_model'].click(fn=reload_model,inputs=[],outputs=[])
|
|
|
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio[k] for k in ['preset_menu_mirror', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']])
|
|
|
shared.gradio['preset_menu_mirror'].change(load_preset_values, [shared.gradio['preset_menu_mirror']], [shared.gradio[k] for k in ['preset_menu', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']])
|
|
|
shared.gradio['lora_menu'].change(load_lora_wrapper, [shared.gradio['lora_menu']], [shared.gradio['lora_menu'], shared.gradio['textbox']], show_progress=True)
|