|
|
@@ -1,4 +1,4 @@
|
|
|
-import sys, torch, json
|
|
|
+import sys, torch, json, threading, time
|
|
|
from pathlib import Path
|
|
|
import gradio as gr
|
|
|
from datasets import load_dataset
|
|
|
@@ -6,6 +6,9 @@ import transformers
|
|
|
from modules import ui, shared
|
|
|
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict
|
|
|
|
|
|
+CURRENT_STEPS = 0
|
|
|
+MAX_STEPS = 0
|
|
|
+
|
|
|
def get_json_dataset(path: str):
|
|
|
def get_set():
|
|
|
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower)
|
|
|
@@ -40,6 +43,12 @@ def create_train_interface():
|
|
|
output = gr.Markdown(value="(...)")
|
|
|
startButton.click(do_train, [loraName, microBatchSize, batchSize, epochs, learningRate, loraRank, loraAlpha, loraDropout, cutoffLen, dataset, evalDataset, format], [output])
|
|
|
|
|
|
+class Callbacks(transformers.TrainerCallback):
|
|
|
+ def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
|
|
|
+ global CURRENT_STEPS, MAX_STEPS
|
|
|
+ CURRENT_STEPS = state.global_step
|
|
|
+ MAX_STEPS = state.max_steps
|
|
|
+
|
|
|
def cleanPath(basePath: str, path: str):
|
|
|
""""Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
|
|
|
# TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
|
|
|
@@ -50,8 +59,11 @@ def cleanPath(basePath: str, path: str):
|
|
|
return f'{Path(basePath).absolute()}/{path}'
|
|
|
|
|
|
def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, learningRate: float, loraRank: int, loraAlpha: int, loraDropout: float, cutoffLen: int, dataset: str, evalDataset: str, format: str):
|
|
|
+ global CURRENT_STEPS, MAX_STEPS
|
|
|
+ CURRENT_STEPS = 0
|
|
|
+ MAX_STEPS = 0
|
|
|
yield "Prepping..."
|
|
|
- # Input validation / processing
|
|
|
+ # == Input validation / processing ==
|
|
|
# TODO: --lora-dir PR once pulled will need to be applied here
|
|
|
loraName = f"loras/{cleanPath(None, loraName)}"
|
|
|
if dataset is None:
|
|
|
@@ -62,7 +74,7 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le
|
|
|
actualLR = float(learningRate)
|
|
|
shared.tokenizer.pad_token = 0
|
|
|
shared.tokenizer.padding_side = "left"
|
|
|
- # Prep the dataset, format, etc
|
|
|
+ # == Prep the dataset, format, etc ==
|
|
|
with open(cleanPath('training/formats', f'{format}.json'), 'r') as formatFile:
|
|
|
formatData: dict[str, str] = json.load(formatFile)
|
|
|
def tokenize(prompt):
|
|
|
@@ -89,7 +101,7 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le
|
|
|
else:
|
|
|
evalData = load_dataset("json", data_files=cleanPath('training/datasets', f'{evalDataset}.json'))
|
|
|
evalData = evalData['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
|
- # Start prepping the model itself
|
|
|
+ # == Start prepping the model itself ==
|
|
|
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
|
|
|
print("Getting model ready...")
|
|
|
prepare_model_for_int8_training(shared.model)
|
|
|
@@ -128,6 +140,7 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le
|
|
|
ddp_find_unused_parameters=None
|
|
|
),
|
|
|
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
|
|
|
+ callbacks=list([Callbacks()])
|
|
|
)
|
|
|
loraModel.config.use_cache = False
|
|
|
old_state_dict = loraModel.state_dict
|
|
|
@@ -136,12 +149,31 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le
|
|
|
).__get__(loraModel, type(loraModel))
|
|
|
if torch.__version__ >= "2" and sys.platform != "win32":
|
|
|
loraModel = torch.compile(loraModel)
|
|
|
- # Actually start and run and save at the end
|
|
|
+ # == Main run and monitor loop ==
|
|
|
# TODO: save/load checkpoints to resume from?
|
|
|
print("Starting training...")
|
|
|
- yield "Running..."
|
|
|
- trainer.train()
|
|
|
+ yield "Starting..."
|
|
|
+ def threadedRun():
|
|
|
+ trainer.train()
|
|
|
+ thread = threading.Thread(target=threadedRun)
|
|
|
+ thread.start()
|
|
|
+ lastStep = 0
|
|
|
+ startTime = time.perf_counter()
|
|
|
+ while thread.is_alive():
|
|
|
+ time.sleep(0.5)
|
|
|
+ if CURRENT_STEPS != lastStep:
|
|
|
+ lastStep = CURRENT_STEPS
|
|
|
+ timeElapsed = time.perf_counter() - startTime
|
|
|
+ if timeElapsed <= 0:
|
|
|
+ timerInfo = ""
|
|
|
+ else:
|
|
|
+ its = CURRENT_STEPS / timeElapsed
|
|
|
+ if its > 1:
|
|
|
+ timerInfo = f"`{its:.2f}` it/s"
|
|
|
+ else:
|
|
|
+ timerInfo = f"`{1.0/its:.2f}` s/it"
|
|
|
+ yield f"Running... **{CURRENT_STEPS}** / **{MAX_STEPS}** ... {timerInfo}, `{timeElapsed:.1f}` seconds"
|
|
|
print("Training complete, saving...")
|
|
|
loraModel.save_pretrained(loraName)
|
|
|
print("Training complete!")
|
|
|
- yield f"Done! Lora saved to `{loraName}`"
|
|
|
+ yield f"Done! LoRA saved to `{loraName}`"
|