|
|
@@ -71,9 +71,9 @@ settings = {
|
|
|
'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
|
|
|
'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
|
|
|
'stop_at_newline': True,
|
|
|
- 'history_size': 0,
|
|
|
- 'history_size_min': 0,
|
|
|
- 'history_size_max': 64,
|
|
|
+ 'chat_prompt_size': 2048,
|
|
|
+ 'chat_prompt_size_min': 0,
|
|
|
+ 'chat_prompt_size_max': 2048,
|
|
|
'preset_pygmalion': 'Pygmalion',
|
|
|
'name1_pygmalion': 'You',
|
|
|
'name2_pygmalion': 'Kawaii',
|
|
|
@@ -503,13 +503,13 @@ def clean_chat_message(text):
|
|
|
text = text.strip()
|
|
|
return text
|
|
|
|
|
|
-def generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=False):
|
|
|
+def generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
|
|
|
text = clean_chat_message(text)
|
|
|
|
|
|
rows = [f"{context.strip()}\n"]
|
|
|
i = len(history['internal'])-1
|
|
|
count = 0
|
|
|
- max_length = get_max_prompt_length(tokens)
|
|
|
+ max_length = min(get_max_prompt_length(tokens), chat_prompt_size)
|
|
|
while i >= 0 and len(encode(''.join(rows), tokens)[0]) < max_length:
|
|
|
rows.insert(1, f"{name2}: {history['internal'][i][1].strip()}\n")
|
|
|
count += 1
|
|
|
@@ -517,8 +517,6 @@ def generate_chat_prompt(text, tokens, name1, name2, context, history_size, impe
|
|
|
rows.insert(1, f"{name1}: {history['internal'][i][0].strip()}\n")
|
|
|
count += 1
|
|
|
i -= 1
|
|
|
- if history_size != 0 and count >= history_size:
|
|
|
- break
|
|
|
|
|
|
if not impersonate:
|
|
|
rows.append(f"{name1}: {text}\n")
|
|
|
@@ -566,14 +564,14 @@ def extract_message_from_reply(question, reply, current, other, check, extension
|
|
|
|
|
|
return reply, next_character_found, substring_found
|
|
|
|
|
|
-def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
|
+def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
|
|
if args.picture and picture is not None:
|
|
|
text, visible_text = generate_chat_picture(picture, name1, name2)
|
|
|
else:
|
|
|
visible_text = text
|
|
|
|
|
|
text = apply_extensions(text, "input")
|
|
|
- question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
|
|
|
+ question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
|
|
|
history['internal'].append(['', ''])
|
|
|
history['visible'].append(['', ''])
|
|
|
eos_token = '\n' if check else None
|
|
|
@@ -587,8 +585,8 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
|
|
|
break
|
|
|
yield history['visible']
|
|
|
|
|
|
-def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
|
- question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
|
|
|
+def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
|
|
+ question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
|
|
eos_token = '\n' if check else None
|
|
|
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
|
|
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name1, name2, check, extensions=False)
|
|
|
@@ -598,19 +596,19 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
|
|
|
break
|
|
|
yield apply_extensions(reply, "output")
|
|
|
|
|
|
-def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
|
- for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
|
|
+def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
|
|
+ for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
|
|
yield generate_chat_html(_history, name1, name2, character)
|
|
|
|
|
|
-def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
|
+def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
|
|
last = history['visible'].pop()
|
|
|
history['internal'].pop()
|
|
|
text = last[0]
|
|
|
if args.cai_chat:
|
|
|
- for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
|
|
+ for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
|
|
yield i
|
|
|
else:
|
|
|
- for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
|
|
+ for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
|
|
yield i
|
|
|
|
|
|
def remove_last_message(name1, name2):
|
|
|
@@ -886,7 +884,7 @@ if args.chat or args.cai_chat:
|
|
|
with gr.Column():
|
|
|
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
with gr.Column():
|
|
|
- history_size_slider = gr.Slider(minimum=settings['history_size_min'], maximum=settings['history_size_max'], step=1, label='Chat history size in prompt (0 for no limit)', value=settings['history_size'])
|
|
|
+ chat_prompt_size_slider = gr.Slider(minimum=settings['chat_prompt_size_min'], maximum=settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=settings['chat_prompt_size'])
|
|
|
|
|
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
|
|
|
|
|
@@ -926,7 +924,7 @@ if args.chat or args.cai_chat:
|
|
|
if args.extensions is not None:
|
|
|
create_extensions_block()
|
|
|
|
|
|
- input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider]
|
|
|
+ input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size_slider]
|
|
|
if args.picture:
|
|
|
input_params.append(picture_select)
|
|
|
if args.cai_chat:
|