|
|
@@ -46,15 +46,17 @@ def load_model(model_name):
|
|
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
|
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
|
|
- if torch.has_mps:
|
|
|
+ else:
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
- Path(f"models/{shared.model_name}"),low_cpu_mem_usage=True,
|
|
|
- torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16
|
|
|
+ Path(f"models/{shared.model_name}"),
|
|
|
+ low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16
|
|
|
)
|
|
|
- device = torch.device('mps')
|
|
|
- model = model.to(device)
|
|
|
- else:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
|
|
|
+ if torch.has_mps:
|
|
|
+ device = torch.device('mps')
|
|
|
+ model = model.to(device)
|
|
|
+ else:
|
|
|
+ model = model.cuda()
|
|
|
+
|
|
|
|
|
|
# FlexGen
|
|
|
elif shared.args.flexgen:
|