|
|
@@ -201,12 +201,8 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
|
|
yield formatted_outputs(reply, shared.model_name)
|
|
|
|
|
|
- if not shared.args.flexgen:
|
|
|
- if output[-1] == n:
|
|
|
- break
|
|
|
- else:
|
|
|
- if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
|
|
|
- break
|
|
|
+ if output[-1] == n:
|
|
|
+ break
|
|
|
|
|
|
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
|
|
|
else:
|
|
|
@@ -223,14 +219,9 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
|
|
yield formatted_outputs(reply, shared.model_name)
|
|
|
|
|
|
- if not shared.args.flexgen:
|
|
|
- if output[-1] == n:
|
|
|
- break
|
|
|
- input_ids = torch.reshape(output, (1, output.shape[0]))
|
|
|
- else:
|
|
|
- if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
|
|
|
- break
|
|
|
- input_ids = np.reshape(output, (1, output.shape[0]))
|
|
|
+ if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
|
|
|
+ break
|
|
|
+ input_ids = np.reshape(output, (1, output.shape[0]))
|
|
|
|
|
|
if shared.soft_prompt:
|
|
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|