|
@@ -0,0 +1,80 @@
|
|
|
|
|
+from pathlib import Path
|
|
|
|
|
+
|
|
|
|
|
+import llamacpp
|
|
|
|
|
+
|
|
|
|
|
+import modules.shared as shared
|
|
|
|
|
+from modules.callbacks import Iteratorize
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class LlamaCppTokenizer:
|
|
|
|
|
+ """A thin wrapper over the llamacpp tokenizer"""
|
|
|
|
|
+ def __init__(self, model: llamacpp.LlamaInference):
|
|
|
|
|
+ self._tokenizer = model.get_tokenizer()
|
|
|
|
|
+ self.eos_token_id = 2
|
|
|
|
|
+ self.bos_token_id = 0
|
|
|
|
|
+
|
|
|
|
|
+ @classmethod
|
|
|
|
|
+ def from_model(cls, model: llamacpp.LlamaInference):
|
|
|
|
|
+ return cls(model)
|
|
|
|
|
+
|
|
|
|
|
+ def encode(self, prompt: str):
|
|
|
|
|
+ return self._tokenizer.tokenize(prompt)
|
|
|
|
|
+
|
|
|
|
|
+ def decode(self, ids):
|
|
|
|
|
+ return self._tokenizer.detokenize(ids)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class LlamaCppModel:
|
|
|
|
|
+ def __init__(self):
|
|
|
|
|
+ self.initialized = False
|
|
|
|
|
+
|
|
|
|
|
+ @classmethod
|
|
|
|
|
+ def from_pretrained(self, path):
|
|
|
|
|
+ params = llamacpp.InferenceParams()
|
|
|
|
|
+ params.path_model = str(path)
|
|
|
|
|
+
|
|
|
|
|
+ _model = llamacpp.LlamaInference(params)
|
|
|
|
|
+
|
|
|
|
|
+ result = self()
|
|
|
|
|
+ result.model = _model
|
|
|
|
|
+ result.params = params
|
|
|
|
|
+
|
|
|
|
|
+ tokenizer = LlamaCppTokenizer.from_model(_model)
|
|
|
|
|
+ return result, tokenizer
|
|
|
|
|
+
|
|
|
|
|
+ def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
|
|
|
|
+ params = self.params
|
|
|
|
|
+ params.n_predict = token_count
|
|
|
|
|
+ params.top_p = top_p
|
|
|
|
|
+ params.top_k = top_k
|
|
|
|
|
+ params.temp = temperature
|
|
|
|
|
+ params.repeat_penalty = repetition_penalty
|
|
|
|
|
+ #params.repeat_last_n = repeat_last_n
|
|
|
|
|
+
|
|
|
|
|
+ # model.params = params
|
|
|
|
|
+ self.model.add_bos()
|
|
|
|
|
+ self.model.update_input(context)
|
|
|
|
|
+
|
|
|
|
|
+ output = ""
|
|
|
|
|
+ is_end_of_text = False
|
|
|
|
|
+ ctr = 0
|
|
|
|
|
+ while ctr < token_count and not is_end_of_text:
|
|
|
|
|
+ if self.model.has_unconsumed_input():
|
|
|
|
|
+ self.model.ingest_all_pending_input()
|
|
|
|
|
+ else:
|
|
|
|
|
+ self.model.eval()
|
|
|
|
|
+ token = self.model.sample()
|
|
|
|
|
+ text = self.model.token_to_str(token)
|
|
|
|
|
+ is_end_of_text = token == self.model.token_eos()
|
|
|
|
|
+ if callback:
|
|
|
|
|
+ callback(text)
|
|
|
|
|
+ ctr += 1
|
|
|
|
|
+
|
|
|
|
|
+ return output
|
|
|
|
|
+
|
|
|
|
|
+ def generate_with_streaming(self, **kwargs):
|
|
|
|
|
+ with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
|
|
|
|
+ reply = ''
|
|
|
|
|
+ for token in generator:
|
|
|
|
|
+ reply += token
|
|
|
|
|
+ yield reply
|