|
|
@@ -1,6 +1,13 @@
|
|
|
-import os, time, types, torch
|
|
|
+import os
|
|
|
+import time
|
|
|
+import types
|
|
|
from pathlib import Path
|
|
|
+
|
|
|
import numpy as np
|
|
|
+import torch
|
|
|
+
|
|
|
+import modules.shared as shared
|
|
|
+
|
|
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
|
|
|
|
os.environ['RWKV_JIT_ON'] = '1'
|
|
|
@@ -10,17 +17,11 @@ import repositories.ChatRWKV.v2.rwkv as rwkv
|
|
|
from rwkv.model import RWKV
|
|
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
|
|
|
|
|
-def load_RWKV_model(path):
|
|
|
- os.system("ls")
|
|
|
- model = RWKV(model=path.as_posix(), strategy='cuda fp16')
|
|
|
|
|
|
- out, state = model.forward([187, 510, 1563, 310, 247], None) # use 20B_tokenizer.json
|
|
|
- print(out.detach().cpu().numpy()) # get logits
|
|
|
- out, state = model.forward([187, 510], None)
|
|
|
- out, state = model.forward([1563], state) # RNN has state (use deepcopy if you want to clone it)
|
|
|
- out, state = model.forward([310, 247], state)
|
|
|
- print(out.detach().cpu().numpy()) # same result as above
|
|
|
+def load_RWKV_model(path):
|
|
|
+ print(f'strategy={"cpu" if shared.args.cpu else "cuda"} {"fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16"}')
|
|
|
|
|
|
+ model = RWKV(model=path.as_posix(), strategy=f'{"cpu" if shared.args.cpu else "cuda"} {"fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16"}')
|
|
|
pipeline = PIPELINE(model, Path("repositories/ChatRWKV/20B_tokenizer.json").as_posix())
|
|
|
|
|
|
return pipeline
|