|
@@ -215,10 +215,9 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
preset = infile.read()
|
|
preset = infile.read()
|
|
|
loaded_preset = inference_settings
|
|
loaded_preset = inference_settings
|
|
|
|
|
|
|
|
- cuda = "" if args.cpu else ".cuda()"
|
|
|
|
|
- n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
|
|
|
|
input_ids = encode(question, tokens)
|
|
input_ids = encode(question, tokens)
|
|
|
-
|
|
|
|
|
|
|
+ cuda = "" if (args.cpu or args.deepspeed) else ".cuda()"
|
|
|
|
|
+ n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
|
|
if stopping_string is not None:
|
|
if stopping_string is not None:
|
|
|
# The stopping_criteria code below was copied from
|
|
# The stopping_criteria code below was copied from
|
|
|
# https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
|
|
# https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
|
|
@@ -232,14 +231,15 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
else:
|
|
else:
|
|
|
stopping_criteria_list = None
|
|
stopping_criteria_list = None
|
|
|
|
|
|
|
|
|
|
+ generate_params = [f"eos_token_id={n}", "stopping_criteria=stopping_criteria_list"]
|
|
|
|
|
+ if args.deepspeed:
|
|
|
|
|
+ generate_params.append("synced_gpus=True")
|
|
|
|
|
+
|
|
|
# Generate the entire reply at once
|
|
# Generate the entire reply at once
|
|
|
if args.no_stream:
|
|
if args.no_stream:
|
|
|
t0 = time.time()
|
|
t0 = time.time()
|
|
|
with torch.no_grad():
|
|
with torch.no_grad():
|
|
|
- if not args.deepspeed:
|
|
|
|
|
- output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset}){cuda}")
|
|
|
|
|
- else:
|
|
|
|
|
- output = eval(f"model.generate(input_ids, synced_gpus=True, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset})")
|
|
|
|
|
|
|
+ output = eval(f"model.generate(input_ids, {','.join(generate_params)}, {preset}){cuda}")
|
|
|
reply = decode(output[0])
|
|
reply = decode(output[0])
|
|
|
t1 = time.time()
|
|
t1 = time.time()
|
|
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output[0])-len(input_ids[0]))/(t1-t0):.2f} it/s)")
|
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output[0])-len(input_ids[0]))/(t1-t0):.2f} it/s)")
|
|
@@ -253,10 +253,7 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=8')
|
|
preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=8')
|
|
|
for i in tqdm(range(tokens//8+1)):
|
|
for i in tqdm(range(tokens//8+1)):
|
|
|
with torch.no_grad():
|
|
with torch.no_grad():
|
|
|
- if not args.deepspeed:
|
|
|
|
|
- output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset}){cuda}")
|
|
|
|
|
- else:
|
|
|
|
|
- output = eval(f"model.generate(input_ids, synced_gpus=True, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset})")
|
|
|
|
|
|
|
+ output = eval(f"model.generate(input_ids, {','.join(generate_params)}, {preset}){cuda}")
|
|
|
reply = decode(output[0])
|
|
reply = decode(output[0])
|
|
|
if not (args.chat or args.cai_chat):
|
|
if not (args.chat or args.cai_chat):
|
|
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|