Pārlūkot izejas kodu

Use state as function param

oobabooga 2 gadi atpakaļ
vecāks
revīzija
613996dd01
3 mainītis faili ar 71 papildinājumiem un 57 dzēšanām
  1. 8 8
      modules/chat.py
  2. 37 39
      modules/text_generation.py
  3. 26 10
      server.py

+ 8 - 8
modules/chat.py

@@ -91,7 +91,7 @@ def extract_message_from_reply(reply, name1, name2, stop_at_newline):
     reply = fix_newlines(reply)
     return reply, next_character_found
 
-def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, regenerate=False, mode="cai-chat", end_of_turn=""):
+def chatbot_wrapper(text, max_new_tokens, generation_params, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, regenerate=False, mode="cai-chat", end_of_turn=""):
     just_started = True
     eos_token = '\n' if stop_at_newline else None
     name1_original = name1
@@ -126,7 +126,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
     cumulative_reply = ''
     for i in range(chat_generation_attempts):
         reply = None
-        for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
+        for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", max_new_tokens, generation_params, seed, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
             reply = cumulative_reply + reply
 
             # Extracting the reply
@@ -155,7 +155,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
 
     yield shared.history['visible']
 
-def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
+def impersonate_wrapper(text, max_new_tokens, generation_params, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
     eos_token = '\n' if stop_at_newline else None
 
     if 'pygmalion' in shared.model_name.lower():
@@ -169,7 +169,7 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
     cumulative_reply = ''
     for i in range(chat_generation_attempts):
         reply = None
-        for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
+        for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", max_new_tokens, generation_params, seed, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
             reply = cumulative_reply + reply
             reply, next_character_found = extract_message_from_reply(reply, name1, name2, stop_at_newline)
             yield reply
@@ -181,11 +181,11 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
 
     yield reply
 
-def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
-    for history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts, regenerate=False, mode=mode, end_of_turn=end_of_turn):
+def cai_chatbot_wrapper(text, max_new_tokens, generation_params, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
+    for history in chatbot_wrapper(text, max_new_tokens, generation_params, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts, regenerate=False, mode=mode, end_of_turn=end_of_turn):
         yield chat_html_wrapper(history, name1, name2, mode)
 
-def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
+def regenerate_wrapper(text, max_new_tokens, generation_params, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
     if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
         yield chat_html_wrapper(shared.history['visible'], name1, name2, mode)
     else:
@@ -193,7 +193,7 @@ def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typi
         last_internal = shared.history['internal'].pop()
         # Yield '*Is typing...*'
         yield chat_html_wrapper(shared.history['visible']+[[last_visible[0], shared.processing_message]], name1, name2, mode)
-        for history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts, regenerate=True, mode=mode, end_of_turn=end_of_turn):
+        for history in chatbot_wrapper(last_internal[0], max_new_tokens, generation_params, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts, regenerate=True, mode=mode, end_of_turn=end_of_turn):
             shared.history['visible'][-1] = [last_visible[0], history[-1][1]]
             yield chat_html_wrapper(shared.history['visible'], name1, name2, mode)
 

+ 37 - 39
modules/text_generation.py

@@ -102,10 +102,13 @@ def set_manual_seed(seed):
 def stop_everything_event():
     shared.stop_everything = True
 
-def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=None, stopping_strings=[]):
+def generate_reply(question, max_new_tokens, generation_params, seed, eos_token=None, stopping_strings=[]):
+    print(generation_params)
+    print('---------------')
     clear_torch_cache()
     set_manual_seed(seed)
     shared.stop_everything = False
+    updated_params = {}
     t0 = time.time()
 
     original_question = question
@@ -117,9 +120,14 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
     # These models are not part of Hugging Face, so we handle them
     # separately and terminate the function call earlier
     if any((shared.is_RWKV, shared.is_llamacpp)):
+
+        for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
+            updated_params[k] = generation_params[k]
+        updated_params["token_count"] = generation_params["max_new_tokens"]
+
         try:
             if shared.args.no_stream:
-                reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
+                reply = shared.model.generate(context=question, **updated_params)
                 output = original_question+reply
                 if not shared.is_chat():
                     reply = original_question + apply_extensions(reply, "output")
@@ -130,7 +138,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
 
                 # RWKV has proper streaming, which is very nice.
                 # No need to generate 8 tokens at a time.
-                for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty):
+                for reply in shared.model.generate_with_streaming(context=question, **updated_params):
                     output = original_question+reply
                     if not shared.is_chat():
                         reply = original_question + apply_extensions(reply, "output")
@@ -158,49 +166,39 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
         t = [encode(string, 0, add_special_tokens=False) for string in stopping_strings]
         stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
 
-    generate_params = {}
+    updated_params["max_new_tokens"] = max_new_tokens
     if not shared.args.flexgen:
-        generate_params.update({
-            "max_new_tokens": max_new_tokens,
-            "eos_token_id": eos_token_ids,
-            "stopping_criteria": stopping_criteria_list,
-            "do_sample": do_sample,
-            "temperature": temperature,
-            "top_p": top_p,
-            "typical_p": typical_p,
-            "repetition_penalty": repetition_penalty,
-            "encoder_repetition_penalty": encoder_repetition_penalty,
-            "top_k": top_k,
-            "min_length": min_length if shared.args.no_stream else 0,
-            "no_repeat_ngram_size": no_repeat_ngram_size,
-            "num_beams": num_beams,
-            "penalty_alpha": penalty_alpha,
-            "length_penalty": length_penalty,
-            "early_stopping": early_stopping,
-        })
+        updated_params["eos_token_id"] = eos_token_ids
+        updated_params["stopping_criteria"] = stopping_criteria_list
+        for k in ["do_sample", "temperature", "top_p", "typical_p", "repetition_penalty", "encoder_repetition_penalty", "top_k", "min_length", "no_repeat_ngram_size", "num_beams", "penalty_alpha", "length_penalty", "early_stopping"]:
+            updated_params[k] = generation_params[k]
+
+        if shared.args.no_stream:
+            updated_params["min_length"] = 0
     else:
-        generate_params.update({
-            "max_new_tokens": max_new_tokens if shared.args.no_stream else 8,
-            "do_sample": do_sample,
-            "temperature": temperature,
-            "stop": eos_token_ids[-1],
-        })
+        for k in ["do_sample", "temperature"]:
+            updated_params[k] = generation_params[k]
+        updated_params["stop"] = generation_params["eos_token_ids"][-1]
+        if not shared.args.no_stream:
+            updated_params["max_new_tokens"] = 8
+    print(updated_params)
+
     if shared.args.no_cache:
-        generate_params.update({"use_cache": False})
+        updated_params.update({"use_cache": False})
     if shared.args.deepspeed:
-        generate_params.update({"synced_gpus": True})
+        updated_params.update({"synced_gpus": True})
     if shared.soft_prompt:
         inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
-        generate_params.update({"inputs_embeds": inputs_embeds})
-        generate_params.update({"inputs": filler_input_ids})
+        updated_params.update({"inputs_embeds": inputs_embeds})
+        updated_params.update({"inputs": filler_input_ids})
     else:
-        generate_params.update({"inputs": input_ids})
+        updated_params.update({"inputs": input_ids})
 
     try:
         # Generate the entire reply at once.
         if shared.args.no_stream:
             with torch.no_grad():
-                output = shared.model.generate(**generate_params)[0]
+                output = shared.model.generate(**updated_params)[0]
                 if cuda:
                     output = output.cuda()
             if shared.soft_prompt:
@@ -228,7 +226,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
 
             if not shared.is_chat():
                 yield formatted_outputs(original_question, shared.model_name)
-            with generate_with_streaming(**generate_params) as generator:
+            with generate_with_streaming(**updated_params) as generator:
                 for output in generator:
                     if shared.soft_prompt:
                         output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
@@ -247,7 +245,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
             for i in range(max_new_tokens//8+1):
                 clear_torch_cache()
                 with torch.no_grad():
-                    output = shared.model.generate(**generate_params)[0]
+                    output = shared.model.generate(**updated_params)[0]
                 if shared.soft_prompt:
                     output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
 
@@ -263,10 +261,10 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
                 input_ids = np.reshape(output, (1, output.shape[0]))
                 if shared.soft_prompt:
                     inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
-                    generate_params.update({"inputs_embeds": inputs_embeds})
-                    generate_params.update({"inputs": filler_input_ids})
+                    updated_params.update({"inputs_embeds": inputs_embeds})
+                    updated_params.update({"inputs": filler_input_ids})
                 else:
-                    generate_params.update({"inputs": input_ids})
+                    updated_params.update({"inputs": input_ids})
 
             yield formatted_outputs(reply, shared.model_name)
 

+ 26 - 10
server.py

@@ -85,7 +85,7 @@ def load_lora_wrapper(selected_lora):
     add_lora_to_model(selected_lora)
     return selected_lora
 
-def load_preset_values(preset_menu, return_dict=False):
+def load_preset_values(preset_menu):
     generate_params = {
         'do_sample': True,
         'temperature': 1,
@@ -110,10 +110,7 @@ def load_preset_values(preset_menu, return_dict=False):
 
     generate_params['temperature'] = min(1.99, generate_params['temperature'])
 
-    if return_dict:
-        return generate_params
-    else:
-        return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['encoder_repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
+    return generate_params
 
 def upload_soft_prompt(file):
     with zipfile.ZipFile(io.BytesIO(file)) as zf:
@@ -170,7 +167,8 @@ def create_prompt_menus():
     shared.gradio['save_prompt'].click(save_prompt, [shared.gradio['textbox']], [shared.gradio['status']], show_progress=False)
 
 def create_settings_menus(default_preset):
-    generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
+    generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive')
+    shared.gradio['generation_state'] = gr.State(generate_params)
 
     with gr.Row():
         with gr.Column():
@@ -221,8 +219,26 @@ def create_settings_menus(default_preset):
         with gr.Row():
             shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])
 
+    def update_dict(_dict, k, v):
+        _dict[k] = v
+        return _dict
+
+    for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']:
+        if type(shared.gradio[k]) is gr.Checkbox:
+            shared.gradio[k].change(
+                lambda state, value, copy=k: update_dict(state, copy, value),
+                inputs=[shared.gradio['generation_state'], shared.gradio[k]],
+                outputs=shared.gradio['generation_state'],
+            )
+        else:
+            shared.gradio[k].release(
+                lambda state, value, copy=k: update_dict(state, copy, value),
+                inputs=[shared.gradio['generation_state'], shared.gradio[k]],
+                outputs=shared.gradio['generation_state'],
+            )
+
     shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
-    shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']])
+    shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio[k] for k in ['generation_state']])
     shared.gradio['lora_menu'].change(load_lora_wrapper, [shared.gradio['lora_menu']], [shared.gradio['lora_menu']], show_progress=True)
     shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True)
     shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']])
@@ -376,7 +392,7 @@ def create_interface():
 
                 create_settings_menus(default_preset)
 
-            shared.input_params = [shared.gradio[k] for k in ['Chat input', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts', 'Chat mode', 'end_of_turn']]
+            shared.input_params = [shared.gradio[k] for k in ['Chat input', 'max_new_tokens', 'generation_state', 'seed', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts', 'Chat mode', 'end_of_turn']]
 
             def set_chat_input(textbox):
                 return textbox, ""
@@ -456,7 +472,7 @@ def create_interface():
             with gr.Tab("Parameters", elem_id="parameters"):
                 create_settings_menus(default_preset)
 
-            shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
+            shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'generation_state', 'seed']]
             output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
             gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
             gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
@@ -489,7 +505,7 @@ def create_interface():
             with gr.Tab("Parameters", elem_id="parameters"):
                 create_settings_menus(default_preset)
 
-            shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
+            shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'generation_state', 'seed']]
             output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
             gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
             gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))