|
|
@@ -1,15 +1,15 @@
|
|
|
-import os
|
|
|
import re
|
|
|
import time
|
|
|
import glob
|
|
|
from sys import exit
|
|
|
import torch
|
|
|
import argparse
|
|
|
+from pathlib import Path
|
|
|
import gradio as gr
|
|
|
import transformers
|
|
|
from html_generator import *
|
|
|
-from transformers import AutoTokenizer
|
|
|
-from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel
|
|
|
+from transformers import AutoTokenizer, T5Tokenizer
|
|
|
+from transformers import AutoModelForCausalLM, T5ForConditionalGeneration
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
@@ -17,37 +17,37 @@ parser.add_argument('--model', type=str, help='Name of the model to load by defa
|
|
|
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
|
|
|
args = parser.parse_args()
|
|
|
loaded_preset = None
|
|
|
-available_models = sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*")+ glob.glob("torch-dumps/*"))))
|
|
|
+available_models = sorted(set(map(lambda x : str(x.name).replace('.pt', ''), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*')))))
|
|
|
available_models = [item for item in available_models if not item.endswith('.txt')]
|
|
|
-#available_models = sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*[!\.][!t][!x][!t]")+ glob.glob("torch-dumps/*[!\.][!t][!x][!t]"))))
|
|
|
+available_presets = sorted(set(map(lambda x : str(x.name).split('.')[0], list(Path('presets').glob('*.txt')))))
|
|
|
|
|
|
def load_model(model_name):
|
|
|
print(f"Loading {model_name}...")
|
|
|
t0 = time.time()
|
|
|
|
|
|
# Loading the model
|
|
|
- if os.path.exists(f"torch-dumps/{model_name}.pt"):
|
|
|
+ if Path(f"torch-dumps/{model_name}.pt").exists():
|
|
|
print("Loading in .pt format...")
|
|
|
- model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
|
|
|
+ model = torch.load(Path(f"torch-dumps/{model_name}.pt")).cuda()
|
|
|
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')):
|
|
|
if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
|
|
- model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
|
|
else:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
elif model_name in ['gpt-j-6B']:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
elif model_name in ['flan-t5', 't5-large']:
|
|
|
- model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
|
|
|
+ model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
|
|
|
else:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
|
|
|
# Loading the tokenizer
|
|
|
if model_name.startswith('gpt4chan'):
|
|
|
- tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/")
|
|
|
+ tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
|
|
elif model_name in ['flan-t5']:
|
|
|
- tokenizer = T5Tokenizer.from_pretrained(f"models/{model_name}/")
|
|
|
+ tokenizer = T5Tokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
|
|
else:
|
|
|
- tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/")
|
|
|
+ tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
|
|
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
|
return model, tokenizer
|
|
|
@@ -78,7 +78,7 @@ def generate_reply(question, temperature, max_length, inference_settings, select
|
|
|
torch.cuda.empty_cache()
|
|
|
model, tokenizer = load_model(model_name)
|
|
|
if inference_settings != loaded_preset:
|
|
|
- with open(f'presets/{inference_settings}.txt', 'r') as infile:
|
|
|
+ with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
|
|
|
preset = infile.read()
|
|
|
loaded_preset = inference_settings
|
|
|
|
|
|
@@ -143,7 +143,7 @@ if args.notebook:
|
|
|
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
|
|
|
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
|
|
|
with gr.Column():
|
|
|
- preset_menu = gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="NovelAI-Sphinx Moth", label='Preset')
|
|
|
+ preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
|
|
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
|
|
|
|
|
btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=False)
|
|
|
@@ -161,7 +161,7 @@ else:
|
|
|
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
|
|
|
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
|
|
|
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
|
|
|
- preset_menu = gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="NovelAI-Sphinx Moth", label='Preset')
|
|
|
+ preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
|
|
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
|
|
btn = gr.Button("Generate")
|
|
|
with gr.Column():
|