|
@@ -14,7 +14,7 @@ import llama_inference_offload
|
|
|
from quant import make_quant
|
|
from quant import make_quant
|
|
|
from modelutils import find_layers
|
|
from modelutils import find_layers
|
|
|
|
|
|
|
|
-def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head']):
|
|
|
|
|
|
|
+def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head'], kernel_switch_threshold=128):
|
|
|
config = AutoConfig.from_pretrained(model)
|
|
config = AutoConfig.from_pretrained(model)
|
|
|
def noop(*args, **kwargs):
|
|
def noop(*args, **kwargs):
|
|
|
pass
|
|
pass
|
|
@@ -32,7 +32,7 @@ def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exc
|
|
|
for name in exclude_layers:
|
|
for name in exclude_layers:
|
|
|
if name in layers:
|
|
if name in layers:
|
|
|
del layers[name]
|
|
del layers[name]
|
|
|
- make_quant(model, layers, wbits, groupsize, faster=faster_kernel)
|
|
|
|
|
|
|
+ make_quant(model, layers, wbits, groupsize, faster=faster_kernel, kernel_switch_threshold=kernel_switch_threshold)
|
|
|
|
|
|
|
|
del layers
|
|
del layers
|
|
|
|
|
|
|
@@ -109,7 +109,8 @@ def load_quantized(model_name):
|
|
|
if shared.args.pre_layer:
|
|
if shared.args.pre_layer:
|
|
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
|
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
|
|
|
else:
|
|
else:
|
|
|
- model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize)
|
|
|
|
|
|
|
+ threshold = False if model_type == 'gptj' else 128
|
|
|
|
|
+ model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold)
|
|
|
|
|
|
|
|
# accelerate offload (doesn't work properly)
|
|
# accelerate offload (doesn't work properly)
|
|
|
if shared.args.gpu_memory:
|
|
if shared.args.gpu_memory:
|