|
@@ -7,7 +7,7 @@ from pathlib import Path
|
|
|
import gradio as gr
|
|
import gradio as gr
|
|
|
import torch
|
|
import torch
|
|
|
import transformers
|
|
import transformers
|
|
|
-from datasets import load_dataset
|
|
|
|
|
|
|
+from datasets import Dataset, load_dataset
|
|
|
from peft import (LoraConfig, get_peft_model, get_peft_model_state_dict,
|
|
from peft import (LoraConfig, get_peft_model, get_peft_model_state_dict,
|
|
|
prepare_model_for_int8_training)
|
|
prepare_model_for_int8_training)
|
|
|
|
|
|
|
@@ -18,8 +18,8 @@ CURRENT_STEPS = 0
|
|
|
MAX_STEPS = 0
|
|
MAX_STEPS = 0
|
|
|
CURRENT_GRADIENT_ACCUM = 1
|
|
CURRENT_GRADIENT_ACCUM = 1
|
|
|
|
|
|
|
|
-def get_json_dataset(path: str):
|
|
|
|
|
- return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower)
|
|
|
|
|
|
|
+def get_dataset(path: str, ext: str):
|
|
|
|
|
+ return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob(f'*.{ext}'))), key=str.lower)
|
|
|
|
|
|
|
|
def create_train_interface():
|
|
def create_train_interface():
|
|
|
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
|
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
|
@@ -40,20 +40,26 @@ def create_train_interface():
|
|
|
lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
|
lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
|
|
cutoff_len = gr.Slider(label='Cutoff Length', minimum=0, maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
|
cutoff_len = gr.Slider(label='Cutoff Length', minimum=0, maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
|
|
|
|
|
|
|
- with gr.Row():
|
|
|
|
|
- dataset = gr.Dropdown(choices=get_json_dataset('training/datasets'), value='None', label='Dataset', info='The dataset file to use for training.')
|
|
|
|
|
- ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': get_json_dataset('training/datasets')}, 'refresh-button')
|
|
|
|
|
- eval_dataset = gr.Dropdown(choices=get_json_dataset('training/datasets'), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.')
|
|
|
|
|
- ui.create_refresh_button(eval_dataset, lambda : None, lambda : {'choices': get_json_dataset('training/datasets')}, 'refresh-button')
|
|
|
|
|
- format = gr.Dropdown(choices=get_json_dataset('training/formats'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.')
|
|
|
|
|
- ui.create_refresh_button(format, lambda : None, lambda : {'choices': get_json_dataset('training/formats')}, 'refresh-button')
|
|
|
|
|
|
|
+ with gr.Tab(label="Formatted Dataset"):
|
|
|
|
|
+ with gr.Row():
|
|
|
|
|
+ dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.')
|
|
|
|
|
+ ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
|
|
|
|
|
+ eval_dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.')
|
|
|
|
|
+ ui.create_refresh_button(eval_dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
|
|
|
|
|
+ format = gr.Dropdown(choices=get_dataset('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.')
|
|
|
|
|
+ ui.create_refresh_button(format, lambda : None, lambda : {'choices': get_dataset('training/formats', 'json')}, 'refresh-button')
|
|
|
|
|
+ with gr.Tab(label="Raw Text File"):
|
|
|
|
|
+ with gr.Row():
|
|
|
|
|
+ raw_text_file = gr.Dropdown(choices=get_dataset('training/datasets', 'txt'), value='None', label='Text File', info='The raw text file to use for training.')
|
|
|
|
|
+ ui.create_refresh_button(raw_text_file, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'txt')}, 'refresh-button')
|
|
|
|
|
+ overlap_len = gr.Slider(label='Overlap Length', minimum=0,maximum=512, value=32, step=8, info='Overlap length - ie how many tokens from the prior chunk of text to include into the next chunk. (The chunks themselves will be of a size determined by Cutoff Length above)')
|
|
|
|
|
|
|
|
with gr.Row():
|
|
with gr.Row():
|
|
|
start_button = gr.Button("Start LoRA Training")
|
|
start_button = gr.Button("Start LoRA Training")
|
|
|
stop_button = gr.Button("Interrupt")
|
|
stop_button = gr.Button("Interrupt")
|
|
|
|
|
|
|
|
output = gr.Markdown(value="Ready")
|
|
output = gr.Markdown(value="Ready")
|
|
|
- start_button.click(do_train, [lora_name, micro_batch_size, batch_size, epochs, learning_rate, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format], [output])
|
|
|
|
|
|
|
+ start_button.click(do_train, [lora_name, micro_batch_size, batch_size, epochs, learning_rate, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, raw_text_file, overlap_len], [output])
|
|
|
stop_button.click(do_interrupt, [], [], cancels=[], queue=False)
|
|
stop_button.click(do_interrupt, [], [], cancels=[], queue=False)
|
|
|
|
|
|
|
|
def do_interrupt():
|
|
def do_interrupt():
|
|
@@ -84,7 +90,8 @@ def clean_path(base_path: str, path: str):
|
|
|
return path
|
|
return path
|
|
|
return f'{Path(base_path).absolute()}/{path}'
|
|
return f'{Path(base_path).absolute()}/{path}'
|
|
|
|
|
|
|
|
-def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: float, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str):
|
|
|
|
|
|
|
+def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lora_rank: int,
|
|
|
|
|
+ lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, raw_text_file: str, overlap_len: int):
|
|
|
global WANT_INTERRUPT, CURRENT_STEPS, MAX_STEPS, CURRENT_GRADIENT_ACCUM
|
|
global WANT_INTERRUPT, CURRENT_STEPS, MAX_STEPS, CURRENT_GRADIENT_ACCUM
|
|
|
WANT_INTERRUPT = False
|
|
WANT_INTERRUPT = False
|
|
|
CURRENT_STEPS = 0
|
|
CURRENT_STEPS = 0
|
|
@@ -93,20 +100,17 @@ def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int
|
|
|
# == Input validation / processing ==
|
|
# == Input validation / processing ==
|
|
|
yield "Prepping..."
|
|
yield "Prepping..."
|
|
|
lora_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}"
|
|
lora_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}"
|
|
|
- if dataset is None:
|
|
|
|
|
- return "**Missing dataset choice input, cannot continue.**"
|
|
|
|
|
- if format is None:
|
|
|
|
|
- return "**Missing format choice input, cannot continue.**"
|
|
|
|
|
|
|
+ actual_lr = float(learning_rate)
|
|
|
|
|
+
|
|
|
|
|
+ if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
|
|
|
|
|
+ yield f"Cannot input zeroes."
|
|
|
|
|
+ return
|
|
|
|
|
+
|
|
|
gradient_accumulation_steps = batch_size // micro_batch_size
|
|
gradient_accumulation_steps = batch_size // micro_batch_size
|
|
|
CURRENT_GRADIENT_ACCUM = gradient_accumulation_steps
|
|
CURRENT_GRADIENT_ACCUM = gradient_accumulation_steps
|
|
|
- actual_lr = float(learning_rate)
|
|
|
|
|
shared.tokenizer.pad_token = 0
|
|
shared.tokenizer.pad_token = 0
|
|
|
shared.tokenizer.padding_side = "left"
|
|
shared.tokenizer.padding_side = "left"
|
|
|
|
|
|
|
|
- # == Prep the dataset, format, etc ==
|
|
|
|
|
- with open(clean_path('training/formats', f'{format}.json'), 'r') as formatFile:
|
|
|
|
|
- format_data: dict[str, str] = json.load(formatFile)
|
|
|
|
|
-
|
|
|
|
|
def tokenize(prompt):
|
|
def tokenize(prompt):
|
|
|
result = shared.tokenizer(prompt, truncation=True, max_length=cutoff_len + 1, padding="max_length")
|
|
result = shared.tokenizer(prompt, truncation=True, max_length=cutoff_len + 1, padding="max_length")
|
|
|
return {
|
|
return {
|
|
@@ -114,27 +118,55 @@ def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int
|
|
|
"attention_mask": result["attention_mask"][:-1],
|
|
"attention_mask": result["attention_mask"][:-1],
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
- def generate_prompt(data_point: dict[str, str]):
|
|
|
|
|
- for options, data in format_data.items():
|
|
|
|
|
- if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
|
|
|
|
|
- for key, val in data_point.items():
|
|
|
|
|
- data = data.replace(f'%{key}%', val)
|
|
|
|
|
- return data
|
|
|
|
|
- raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
|
|
|
|
|
|
|
+ # == Prep the dataset, format, etc ==
|
|
|
|
|
+ if raw_text_file is not None:
|
|
|
|
|
+ print("Loading raw text file dataset...")
|
|
|
|
|
+ with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r') as file:
|
|
|
|
|
+ raw_text = file.read()
|
|
|
|
|
+ tokens = shared.tokenizer.encode(raw_text)
|
|
|
|
|
+ del raw_text # Note: could be a gig for a large dataset, so delete redundant data as we go to be safe on RAM
|
|
|
|
|
+ tokens = list(split_chunks(tokens, cutoff_len - overlap_len))
|
|
|
|
|
+ for i in range(1, len(tokens)):
|
|
|
|
|
+ tokens[i] = tokens[i - 1][-overlap_len:] + tokens[i]
|
|
|
|
|
+ text_chunks = [shared.tokenizer.decode(x) for x in tokens]
|
|
|
|
|
+ del tokens
|
|
|
|
|
+ data = Dataset.from_list([tokenize(x) for x in text_chunks])
|
|
|
|
|
+ train_data = data.shuffle()
|
|
|
|
|
+ eval_data = None
|
|
|
|
|
+ del text_chunks
|
|
|
|
|
+
|
|
|
|
|
+ else:
|
|
|
|
|
+ with open(clean_path('training/formats', f'{format}.json'), 'r') as formatFile:
|
|
|
|
|
+ format_data: dict[str, str] = json.load(formatFile)
|
|
|
|
|
|
|
|
- def generate_and_tokenize_prompt(data_point):
|
|
|
|
|
- prompt = generate_prompt(data_point)
|
|
|
|
|
- return tokenize(prompt)
|
|
|
|
|
|
|
+ if dataset is None:
|
|
|
|
|
+ yield "**Missing dataset choice input, cannot continue.**"
|
|
|
|
|
+ return
|
|
|
|
|
+ if format is None:
|
|
|
|
|
+ yield "**Missing format choice input, cannot continue.**"
|
|
|
|
|
+ return
|
|
|
|
|
|
|
|
- print("Loading datasets...")
|
|
|
|
|
- data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
|
|
|
|
|
- train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
|
|
|
|
|
+ def generate_prompt(data_point: dict[str, str]):
|
|
|
|
|
+ for options, data in format_data.items():
|
|
|
|
|
+ if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
|
|
|
|
|
+ for key, val in data_point.items():
|
|
|
|
|
+ data = data.replace(f'%{key}%', val)
|
|
|
|
|
+ return data
|
|
|
|
|
+ raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
|
|
|
|
|
|
|
|
- if eval_dataset == 'None':
|
|
|
|
|
- eval_data = None
|
|
|
|
|
- else:
|
|
|
|
|
- eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
|
|
|
|
|
- eval_data = eval_data['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
|
|
|
|
|
+ def generate_and_tokenize_prompt(data_point):
|
|
|
|
|
+ prompt = generate_prompt(data_point)
|
|
|
|
|
+ return tokenize(prompt)
|
|
|
|
|
+
|
|
|
|
|
+ print("Loading JSON datasets...")
|
|
|
|
|
+ data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
|
|
|
|
|
+ train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
|
|
|
+
|
|
|
|
|
+ if eval_dataset == 'None':
|
|
|
|
|
+ eval_data = None
|
|
|
|
|
+ else:
|
|
|
|
|
+ eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
|
|
|
|
|
+ eval_data = eval_data['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
|
|
|
|
|
|
# == Start prepping the model itself ==
|
|
# == Start prepping the model itself ==
|
|
|
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
|
|
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
|
|
@@ -229,3 +261,7 @@ def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int
|
|
|
else:
|
|
else:
|
|
|
print("Training complete!")
|
|
print("Training complete!")
|
|
|
yield f"Done! LoRA saved to `{lora_name}`"
|
|
yield f"Done! LoRA saved to `{lora_name}`"
|
|
|
|
|
+
|
|
|
|
|
+def split_chunks(arr, step):
|
|
|
|
|
+ for i in range(0, len(arr), step):
|
|
|
|
|
+ yield arr[i:i + step]
|