|
@@ -5,10 +5,9 @@ from transformers import BlipForConditionalGeneration
|
|
|
from transformers import BlipProcessor
|
|
from transformers import BlipProcessor
|
|
|
|
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
|
|
-model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
|
|
|
|
|
|
|
+model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float32).to("cpu")
|
|
|
|
|
|
|
|
-# raw_image = Image.open('/tmp/istockphoto-470604022-612x612.jpg').convert('RGB')
|
|
|
|
|
def caption_image(raw_image):
|
|
def caption_image(raw_image):
|
|
|
- inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
|
|
|
|
|
|
+ inputs = processor(raw_image.convert('RGB'), return_tensors="pt").to("cpu", torch.float32)
|
|
|
out = model.generate(**inputs, max_new_tokens=100)
|
|
out = model.generate(**inputs, max_new_tokens=100)
|
|
|
return processor.decode(out[0], skip_special_tokens=True)
|
|
return processor.decode(out[0], skip_special_tokens=True)
|