oobabooga 2 anni fa
parent
commit
104293f411
6 ha cambiato i file con 51 aggiunte e 8 eliminazioni
  1. 10 1
      css/main.css
  2. 11 6
      download-model.py
  3. 2 0
      modules/models.py
  4. 2 1
      modules/shared.py
  5. 1 0
      requirements.txt
  6. 25 0
      server.py

+ 10 - 1
css/main.css

@@ -1,12 +1,15 @@
 .tabs.svelte-710i53 {
     margin-top: 0
 }
+
 .py-6 {
     padding-top: 2.5rem
 }
+
 .dark #refresh-button {
     background-color: #ffffff1f;
 }
+
 #refresh-button {
   flex: none;
   margin: 0;
@@ -17,22 +20,28 @@
   border-radius: 10px;
   background-color: #0000000d;
 }
+
 #download-label, #upload-label {
   min-height: 0
 }
+
 #accordion {
 }
+
 .dark svg {
   fill: white;
 }
+
 svg {
   display: unset !important;
   vertical-align: middle !important;
   margin: 5px;
 }
+
 ol li p, ul li p {
     display: inline-block;
 }
-#main, #parameters, #chat-settings, #interface-mode {
+
+#main, #parameters, #chat-settings, #interface-mode, #lora {
   border: 0;
 }

+ 11 - 6
download-model.py

@@ -101,6 +101,7 @@ def get_download_links_from_huggingface(model, branch):
     classifications = []
     has_pytorch = False
     has_safetensors = False
+    is_lora = False
     while True:
         content = requests.get(f"{base}{page}{cursor.decode()}").content
 
@@ -110,8 +111,10 @@ def get_download_links_from_huggingface(model, branch):
 
         for i in range(len(dict)):
             fname = dict[i]['path']
+            if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
+                is_lora = True
 
-            is_pytorch = re.match("pytorch_model.*\.bin", fname)
+            is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
             is_safetensors = re.match("model.*\.safetensors", fname)
             is_tokenizer = re.match("tokenizer.*\.model", fname)
             is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer
@@ -130,6 +133,7 @@ def get_download_links_from_huggingface(model, branch):
                         has_pytorch = True
                         classifications.append('pytorch')
 
+
         cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
         cursor = base64.b64encode(cursor)
         cursor = cursor.replace(b'=', b'%3D')
@@ -140,7 +144,7 @@ def get_download_links_from_huggingface(model, branch):
             if classifications[i] == 'pytorch':
                 links.pop(i)
 
-    return links
+    return links, is_lora
 
 if __name__ == '__main__':
     model = args.MODEL
@@ -159,15 +163,16 @@ if __name__ == '__main__':
             except ValueError as err_branch:
                 print(f"Error: {err_branch}")
                 sys.exit()
+
+    links, is_lora = get_download_links_from_huggingface(model, branch)
+    base_folder = 'models' if not is_lora else 'loras'
     if branch != 'main':
-        output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
+        output_folder = Path(base_folder) / (model.split('/')[-1] + f'_{branch}')
     else:
-        output_folder = Path("models") / model.split('/')[-1]
+        output_folder = Path(base_folder) / model.split('/')[-1]
     if not output_folder.exists():
         output_folder.mkdir()
 
-    links = get_download_links_from_huggingface(model, branch)
-
     # Downloading the files
     print(f"Downloading the model to {output_folder}")
     pool = multiprocessing.Pool(processes=args.threads)

+ 2 - 0
modules/models.py

@@ -11,6 +11,8 @@ from accelerate import infer_auto_device_map, init_empty_weights
 from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
                           BitsAndBytesConfig)
 
+from peft import PeftModel
+
 import modules.shared as shared
 
 transformers.logging.set_verbosity_error()

+ 2 - 1
modules/shared.py

@@ -2,7 +2,8 @@ import argparse
 
 model = None
 tokenizer = None
-model_name = ""
+model_name = "None"
+lora_name = "None"
 soft_prompt_tensor = None
 soft_prompt = False
 is_RWKV = False

+ 1 - 0
requirements.txt

@@ -4,6 +4,7 @@ flexgen==0.1.7
 gradio==3.18.0
 markdown
 numpy
+peft==0.2.0
 requests
 rwkv==0.4.2
 safetensors==0.3.0

+ 25 - 0
server.py

@@ -17,6 +17,7 @@ import modules.ui as ui
 from modules.html_generator import generate_chat_html
 from modules.models import load_model, load_soft_prompt
 from modules.text_generation import generate_reply
+from modules.LoRA import add_lora_to_model
 
 # Loading custom settings
 settings_file = None
@@ -48,6 +49,9 @@ def get_available_extensions():
 def get_available_softprompts():
     return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
 
+def get_available_loras():
+    return ['None'] + sorted([item.name for item in list(Path('loras/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
+
 def load_model_wrapper(selected_model):
     if selected_model != shared.model_name:
         shared.model_name = selected_model
@@ -59,6 +63,13 @@ def load_model_wrapper(selected_model):
 
     return selected_model
 
+def load_lora_wrapper(selected_lora):
+    if not shared.args.cpu:
+        gc.collect()
+        torch.cuda.empty_cache()
+    add_lora_to_model(selected_lora)
+    return selected_lora
+
 def load_preset_values(preset_menu, return_dict=False):
     generate_params = {
         'do_sample': True,
@@ -181,6 +192,7 @@ available_models = get_available_models()
 available_presets = get_available_presets()
 available_characters = get_available_characters()
 available_softprompts = get_available_softprompts()
+available_loras = get_available_loras()
 
 # Default extensions
 extensions_module.available_extensions = get_available_extensions()
@@ -401,6 +413,19 @@ def create_interface():
             shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
             shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js}}}")
 
+        with gr.Tab("LoRA", elem_id="lora"):
+            with gr.Row():
+                with gr.Column():
+                    gr.Markdown("Load")
+                    with gr.Row():
+                        shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
+                        ui.create_refresh_button(shared.gradio['lora_menu'], lambda : None, lambda : {'choices': get_available_loras()}, 'refresh-button')
+                with gr.Column():
+                    gr.Markdown("Train (TODO)")
+                    gr.Button("Practice your button clicking skills")
+
+            shared.gradio['lora_menu'].change(load_lora_wrapper, [shared.gradio['lora_menu']], [shared.gradio['lora_menu']], show_progress=True)
+
         with gr.Tab("Interface mode", elem_id="interface-mode"):
             modes = ["default", "notebook", "chat", "cai_chat"]
             current_mode = "default"