|
|
@@ -16,6 +16,7 @@ parser = argparse.ArgumentParser()
|
|
|
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
|
|
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
|
|
|
parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.')
|
|
|
+parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
|
|
args = parser.parse_args()
|
|
|
loaded_preset = None
|
|
|
available_models = sorted(set(map(lambda x : str(x.name).replace('.pt', ''), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*')))))
|
|
|
@@ -26,30 +27,37 @@ def load_model(model_name):
|
|
|
print(f"Loading {model_name}...")
|
|
|
t0 = time.time()
|
|
|
|
|
|
+ if args.cpu:
|
|
|
+ dtype = torch.float32
|
|
|
+ else:
|
|
|
+ dtype = torch.float16
|
|
|
+
|
|
|
# Loading the model
|
|
|
- if Path(f"torch-dumps/{model_name}.pt").exists():
|
|
|
+ if not args.cpu and Path(f"torch-dumps/{model_name}.pt").exists():
|
|
|
print("Loading in .pt format...")
|
|
|
- model = torch.load(Path(f"torch-dumps/{model_name}.pt")).cuda()
|
|
|
+ model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
|
|
|
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')):
|
|
|
if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
|
|
else:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
- elif model_name in ['gpt-j-6B']:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=dtype)
|
|
|
elif model_name in ['flan-t5', 't5-large']:
|
|
|
- model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
|
|
|
+ model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}"))
|
|
|
else:
|
|
|
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=dtype)
|
|
|
|
|
|
# Loading the tokenizer
|
|
|
if model_name.lower().startswith('gpt4chan'):
|
|
|
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
|
|
- elif model_name in ['flan-t5']:
|
|
|
+ elif model_name in ['flan-t5', 't5-large']:
|
|
|
tokenizer = T5Tokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
|
|
else:
|
|
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
|
|
|
|
|
+ # Sending to the GPU
|
|
|
+ if not (args.cpu or any(size in model_name.lower() for size in ('13b', '20b', '30b'))):
|
|
|
+ model = model.cuda()
|
|
|
+
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
|
return model, tokenizer
|
|
|
|
|
|
@@ -76,23 +84,29 @@ def generate_reply(question, temperature, max_length, inference_settings, select
|
|
|
model_name = selected_model
|
|
|
model = None
|
|
|
tokenizer = None
|
|
|
- torch.cuda.empty_cache()
|
|
|
+ if not args.cpu:
|
|
|
+ torch.cuda.empty_cache()
|
|
|
model, tokenizer = load_model(model_name)
|
|
|
if inference_settings != loaded_preset:
|
|
|
with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
|
|
|
preset = infile.read()
|
|
|
loaded_preset = inference_settings
|
|
|
|
|
|
- torch.cuda.empty_cache()
|
|
|
- input_ids = tokenizer.encode(str(question), return_tensors='pt').cuda()
|
|
|
+ if not args.cpu:
|
|
|
+ torch.cuda.empty_cache()
|
|
|
+ input_ids = tokenizer.encode(str(question), return_tensors='pt').cuda()
|
|
|
+ cuda = ".cuda()"
|
|
|
+ else:
|
|
|
+ input_ids = tokenizer.encode(str(question), return_tensors='pt')
|
|
|
+ cuda = ""
|
|
|
|
|
|
if eos_token is None:
|
|
|
- output = eval(f"model.generate(input_ids, {preset}).cuda()")
|
|
|
+ output = eval(f"model.generate(input_ids, {preset}){cuda}")
|
|
|
else:
|
|
|
n = tokenizer.encode(eos_token, return_tensors='pt')[0][1]
|
|
|
- output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}).cuda()")
|
|
|
- reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
+ output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}){cuda}")
|
|
|
|
|
|
+ reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
if model_name.lower().startswith('galactica'):
|
|
|
reply = fix_galactica(reply)
|
|
|
return reply, reply, 'Only applicable for gpt4chan.'
|