|
|
@@ -314,7 +314,7 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
t0 = time.time()
|
|
|
if args.deepspeed:
|
|
|
with torch.no_grad():
|
|
|
- output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset})")
|
|
|
+ output = eval(f"model.generate(input_ids, synced_gpus=True, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset})")
|
|
|
else:
|
|
|
output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset}){cuda}")
|
|
|
reply = decode(output[0])
|
|
|
@@ -331,7 +331,7 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
for i in tqdm(range(tokens//8+1)):
|
|
|
if args.deepspeed:
|
|
|
with torch.no_grad():
|
|
|
- output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset})")
|
|
|
+ output = eval(f"model.generate(input_ids, synced_gpus=True, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset})")
|
|
|
else:
|
|
|
output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset}){cuda}")
|
|
|
reply = decode(output[0])
|