|
|
@@ -0,0 +1,65 @@
|
|
|
+'''
|
|
|
+Based on
|
|
|
+https://github.com/abetlen/llama-cpp-python
|
|
|
+
|
|
|
+Documentation:
|
|
|
+https://abetlen.github.io/llama-cpp-python/
|
|
|
+'''
|
|
|
+
|
|
|
+import multiprocessing
|
|
|
+
|
|
|
+from llama_cpp import Llama
|
|
|
+
|
|
|
+from modules import shared
|
|
|
+from modules.callbacks import Iteratorize
|
|
|
+
|
|
|
+
|
|
|
+class LlamaCppModel:
|
|
|
+ def __init__(self):
|
|
|
+ self.initialized = False
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_pretrained(self, path):
|
|
|
+ result = self()
|
|
|
+
|
|
|
+ params = {
|
|
|
+ 'model_path': str(path),
|
|
|
+ 'n_ctx': 2048,
|
|
|
+ 'seed': 0,
|
|
|
+ 'n_threads': shared.args.threads or None
|
|
|
+ }
|
|
|
+ self.model = Llama(**params)
|
|
|
+
|
|
|
+ # This is ugly, but the model and the tokenizer are the same object in this library.
|
|
|
+ return result, result
|
|
|
+
|
|
|
+ def encode(self, string):
|
|
|
+ if type(string) is str:
|
|
|
+ string = string.encode()
|
|
|
+ return self.model.tokenize(string)
|
|
|
+
|
|
|
+ def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
|
|
+ if type(context) is str:
|
|
|
+ context = context.encode()
|
|
|
+ tokens = self.model.tokenize(context)
|
|
|
+
|
|
|
+ output = b""
|
|
|
+ count = 0
|
|
|
+ for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty):
|
|
|
+ text = self.model.detokenize([token])
|
|
|
+ output += text
|
|
|
+ if callback:
|
|
|
+ callback(text.decode())
|
|
|
+
|
|
|
+ count += 1
|
|
|
+ if count >= token_count or (token == self.model.token_eos()):
|
|
|
+ break
|
|
|
+
|
|
|
+ return output.decode()
|
|
|
+
|
|
|
+ def generate_with_streaming(self, **kwargs):
|
|
|
+ with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
|
|
+ reply = ''
|
|
|
+ for token in generator:
|
|
|
+ reply += token
|
|
|
+ yield reply
|