|
@@ -139,11 +139,11 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
preset = infile.read()
|
|
preset = infile.read()
|
|
|
loaded_preset = inference_settings
|
|
loaded_preset = inference_settings
|
|
|
|
|
|
|
|
|
|
+ input_ids = encode(question, 1)
|
|
|
|
|
+ preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=1')
|
|
|
|
|
+ cuda = ".cuda()" if args.cpu else ""
|
|
|
for i in range(tokens):
|
|
for i in range(tokens):
|
|
|
- input_ids = encode(question, 1)
|
|
|
|
|
- preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=1')
|
|
|
|
|
|
|
|
|
|
- cuda = ".cuda()" if args.cpu else ""
|
|
|
|
|
if eos_token is None:
|
|
if eos_token is None:
|
|
|
output = eval(f"model.generate(input_ids, {preset}){cuda}")
|
|
output = eval(f"model.generate(input_ids, {preset}){cuda}")
|
|
|
else:
|
|
else:
|
|
@@ -152,7 +152,6 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
|
|
|
|
|
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
reply = reply.replace(r'<|endoftext|>', '')
|
|
reply = reply.replace(r'<|endoftext|>', '')
|
|
|
- question = reply
|
|
|
|
|
if model_name.lower().startswith('galactica'):
|
|
if model_name.lower().startswith('galactica'):
|
|
|
reply = fix_galactica(reply)
|
|
reply = fix_galactica(reply)
|
|
|
yield reply, reply, generate_basic_html(reply)
|
|
yield reply, reply, generate_basic_html(reply)
|
|
@@ -162,6 +161,8 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
else:
|
|
else:
|
|
|
yield reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
|
|
yield reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
|
|
|
|
|
|
|
|
|
|
+ input_ids = output
|
|
|
|
|
+
|
|
|
# Choosing the default model
|
|
# Choosing the default model
|
|
|
if args.model is not None:
|
|
if args.model is not None:
|
|
|
model_name = args.model
|
|
model_name = args.model
|